跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李語潔
Yu-Chieh Lee
論文名稱: 加密貨幣的定價與金融壓力及政策不確定性之關聯
Cryptocurrency Pricing, Financial Stress Index, and Economic Policy Uncertainty
指導教授: 高櫻芬
Yin‑Feng Gau
鄒孟文
Meng-Wen Tsou
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 產業經濟研究所
Graduate Institute of Industrial Economics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 49
中文關鍵詞: 加密貨幣因子模型金融壓力指數經濟政策不確定性指數
外文關鍵詞: Cryptocurency, Factor model, Financial Stress Index, Economic Policy Uncertainty
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文想藉由因子模型探討加密貨幣的超額報酬和金融壓力及經濟政策不確定性之關聯,使用Deng et al. (2019) 的四因子模型,其中包含市場因子、規模因子、流動性因子及動能因子,並再加入金融壓力指數 (FSI) 及經濟政策不確定性指數 (EPU),並採用不同國家的EPU加以分析其結果是否存在差異。實證結果顯示,加密貨幣超額報酬和金融壓力指數不存在顯著相關性,但兩者關係趨向負相關,另外和全球EPU指數則部分呈現負向顯著相關,即當經濟政策的不確定性增加時,加密貨幣的超額報酬會下降,但不受單一國家EPU影響。


    This thesis uses the factor model to explore the relationship between cryptocurrency’s excess return and financial stress and economic policy uncertainty. Using the four-factor model of Deng et al. (2019), which includes market, size, liquidity and contrarian factors, we further add the Financial Stress Index (FSI) and Economic Policy Uncertainty Index (EPU) into the factor model, and also use the EPU of different countries to analyze whether the results are different. The empirical results show that there is no significant correlation between cryptocurrency’s excess return and financial stress index, but the relationship between the two tends to be negatively correlated. In addition, it is partially negatively correlated with the global EPU index, that is, when the uncertainty of economic policy increases, the return of the cryptocurrency will decrease, but it is not affected by the EPU of a single country.

    摘要 i Abstract ii 誌 謝 iii 目 錄 iv 圖目錄 v 表目錄 v 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第二章 比特幣及加密貨幣市場簡介 5 第三章 文獻回顧 8 第一節 比特幣在金融市場中的定位 8 第二節 運用資本資產定價模型分析影響比特幣報酬因子 10 第三節 探討比特幣和金融壓力指數關係的文獻 12 第四章 研究方法 14 第一節 研究期間與資料來源 14 第二節 定價模型 15 第三節 金融壓力指數 17 第四節 經濟政策不確定性指數 19 第五章 實證結果分析 21 第一節 敘述性統計 21 第二節 迴歸分析 22 (1) 四因子模型 22 (2) 虛擬變數 24 第六章 結論 26 參考文獻 27

    Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4), 1593-1636.
    Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1-4.
    Bouri, E., Gupta, R., Lau, C. K. M., Roubaud, D., & Wang, S. (2018). Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles. The Quarterly Review of Economics and Finance, 69, 297-307.
    Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20, 192-198.
    Brogaard, J., & Detzel, A. (2015). The asset-pricing implications of government economic policy uncertainty. Management Science, 61(1), 3-18.
    Cheah, E. T., & Fry, J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, 32-36.
    Ciaian, P., Rajcaniova, M., & Kancs, D. A. (2016). The economics of BitCoin price formation. Applied Economics, 48(19), 1799-1815.
    Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis, 62, 182-199.
    Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28-34.
    Davis, S. J. (2016). An index of global economic policy uncertainty (No. w22740). National Bureau of Economic Research.
    Deng, X., Chuen, D. L. K., Wang, Y., & Zhang, X. (2019). A Five-Factor Cryptocurrency Pricing Model. Working paper.
    Dickey, D. A., & Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: journal of the Econometric Society, 1057-1072.
    Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–A GARCH volatility analysis. Finance Research Letters, 16, 85-92.
    Dyhrberg, A. H. (2016). Hedging capabilities of bitcoin. Is it the virtual gold?. Finance Research Letters, 16, 139-144.
    Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3-56.
    Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., & Giaglis, G. M. (2015). Using time-series and sentiment analysis to detect the determinants of bitcoin prices. Available at SSRN 2607167.
    Hu, A. S., Parlour, C. A., & Rajan, U. (2019). Cryptocurrencies: Stylized facts on a new investible instrument. Financial Management, 48(4), 1049-1068.
    Jo, H., Park, H., & Shefrin, H. (2018). Bitcoin and Sentiment. Working paper.
    Phillips, P. C., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
    Stenqvist, E., & Lönnö, J. (2017). Predicting Bitcoin price fluctuation with Twitter sentiment analysis. Working paper.
    Wang, G. J., Xie, C., Wen, D., & Zhao, L. (2019). When Bitcoin meets economic policy uncertainty (EPU): Measuring risk spillover effect from EPU to Bitcoin. Finance Research Letters, 31.
    Federal Reserve Bank of St. Louis, St. Louis Fed Financial Stress Index [STLFSI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/STLFSI.
    Paul Vigna and Michael J. Casey (2017)。《虛擬貨幣革命》。林奕伶譯。新北市。大牌出版公司。

    QR CODE
    :::