| 研究生: |
許俊哲 Chun-Che Hsu |
|---|---|
| 論文名稱: |
負電荷介質材料在矽晶太陽電池之研究 Research on the applications of negative charge material in silicon solar cells |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | p型矽晶圓 、矽晶太陽能電池 、表面鈍化 、負電荷材料 |
| 外文關鍵詞: | surface passivation, silicon solar cell, p type silicon wafer, negative charge material |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展環保能源科技已成為二十一世紀各國研究重心,其中開發再生能源中的太陽能,一直是視為各先進國家矚目的焦點。
然而對於現今大多數太陽能電池而言低轉換效率始終是存在的問題,其主要原因之ㄧ是來自於矽材料內部的缺陷所導致,而對於矽晶太陽能電池來說,晶圓表面的缺陷更是整體缺陷的主要來源,因此本研究預計在矽晶材料上成長負電荷介質材料來製作表面鈍化層,以成長高效率矽晶太陽能電池。
負電荷介質材料的選擇可減少太陽能電池自由載子之表面復合,特別是對於p型的晶圓而言更能提升載子傳遞效率進而提升矽晶太陽能電池轉換效率。
一般而言,達到高效率工業生產太陽能電池之重要的技術之ㄧ在於對結晶矽(Crystalline silicon)表面作表面之鈍化(Surface passivation),而隨著製程厚度的越來越薄也使得此技術更顯的重要。文獻指出Al2O3或是AlOxNy材料比傳統的含氫之氮化矽具有更佳的鈍化效果,可廣泛應用高摻p型單晶矽表面,這是由於材料內部在成長之後形成的大量負電荷所導致。
除此之外,材料對於可見光及近紅外線的波段也幾乎不會產生吸收。另ㄧ方面由於AlOxNy含有比Al2O3更大量的負電荷,因此我們將在矽晶材料上成長負電荷介質材料AlOxNy以成長矽晶太陽能電池,並達到太陽能電池轉換效率提升之目標。
The researches on the environment friendly and energy saving technologies have been more and more important nowadays. Among creating recycled energy, solar cell is especially an important topic in many developed countries. However, the low conversion efficiency is still an existing problem in silicon solar cells. One of the important reasons is from the internal defect of silicon material. To silicon wafer based solar cells, the surface defect is especially the principle part among the entire defect. Therefore, our research focused on fabricating passivation layer of negative charge on silicon wafer based solar cell. We expected to apply this kind of passivation layer for achieving high efficiency silicon solar cells.
By applying the negative charge material on the surface of silicon solar cells, the recombination effect of free carriers occurring near the surface of solar cells can be reduced. Especially to the p type silicon solar cells, this surface passivation layer can effectively improve possibility of carrier transportation and increase the final conversion efficiency of solar cells. In general, surface passivation technique is becoming more and more important due to the thinner thickness of solar cells are also developed recently. Some one proposed that the material usage of Al2O3 and AlOxNy would have better performance in passivated surface of solar cells than conventional materials. Therefore, these kinds of materials have widespread application on surface of highly doping p type silicon wafer because that these have lots of negative charge which forms surface field-effect to improve the outcome of surface passivation. Besides, these materials also have high transparency from the spectrum range of visible to infrared wavelength. In another hand, AlOxNy material exist larger negative charge than Al2O3 material. Therefore, we choose this material of AlOxNy for fabricating the silicon solar cells.
[1] 鍾佳安,”從一九七三年至二OOO年美國石油危機與對策看經濟安全概念”,41卷,6期(2002)
[2] 張品全,科學發展,349 23-29 (2002)
[3] P. Würfel, ”Physics Of Solar Cells”, Willey-VCH Verlag GmbH & Co.KgaA
(2005)
[4] 熊谷秀,科學發展,349 34-41 (2004)
[5] 顧鴻濤,"太陽能電池元件導論" 台北,全威圖書有限公司(2008)
[6] B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. van de Sanden, and W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3”, Applied Physic Letters 89, 042112 (2006)
[7] G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Solar Energy Materials & Solar Cells 90 3438–3443 (2006)
[8] S.N. Ghosh, I.O. Parm, S.K. Dhungel, K.S. Jang, S.W. Jeong, J. Yoo, S.H. Hwang, J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films”, Renewable Energy 33 320–325 (2008)
[9] N. Kaiser, “Review of the fundamentals of thin-film growth” , Applied Optics 41, 3053-3060 (2002)
[10] J.A. Thornton, “Influence of apparatus geometry and deposition conditions on
the structure and topography of thick sputtered coatings” , Journal of Vacuum Science and Technology 11, 666-672 (1974)
[11] R. Messier, A.P. Giri, and R.A. Roy, “Revised structure zone model for thin film
physical structure” , Journal of Vacuum Science and Technology A2, 500-503(1984)
[12] W.R. Grove, Phil. Trams. Roy. Soc. London, 142, 87 (1852)
[13] G.K. Wehner, “Threshold Energies for Sputtering and the Sound Velocity in
Metals” , Physical Review 93, 633 (1954)
[14] P.J. Martin, “Review Ion-based methods for optical thin film deposition” ,
Journal of Materials Science 21, 1-25 (1986)
[15] 唐謙仁,“離子束濺鍍Ta2O5-TiO2與Ta2O5-SiO2混合膜之特性研究“,中央大學,博士論文(2007)
[16] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,第六版, 283 (2009).
[17] E.H. Nicollian and J.R. Brews., “MOS Physics and Technology”, New York:
Wiley(1982)
[18] R.F. Pierret, “Semiconductor Device Fundamentals Reading”, MA: Addison
Wesley(1996)
[19] 張博俊,“以迴旋濺鍍法成長氮化鋁薄膜之機制探討“,中原大學,碩士
論文(2003)
[20] M. Shur, “Physics of Semiconductor Devices”, Englewood Cliffs, NJ:Prentice
Hall(1990)
[21]B.E. Deal, “Standardized terminology for oxide charges associated with thermally
oxidized silicon”, IEEE Transactions on Electron Devices ED-27, 606(1980)
[22] D.K. Schroder, “Semiconductor material and device characterization 2nd edition”
,Wiley, New York (1998)
[23] H.C. Casey, “Devices for intergrated circuits silicon and III-V compound Semiconductors”, John Wiley, New York(1999)
[24] A. Goetzberger, E. Klausmann and M.J. Schulz, “Interface states on semiconductor/insulator interface”, Critical Reviews in Solid State Science 6, 1-43(1976)
[25] G. Declerck, J. N. Zemel, ”Characterization of surface states at the Si-SiO2 interface in Nondestructive Evaluation of of Semiconductor Materials and Devices”, Plenum Press, New York, 105-148(1979)
[26] 蔡進譯,” 超高效率太陽電池從愛因斯坦的光電效應談起”,物理雙月刊,
27卷,5期(2005)
[27] D.N. Wright, E.S. Marstein, ” Double layer anti-reflective coatings for silicon solar cells”, Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE(2005)
[28] http://niufood.niu.edu.tw/nano/analyze/pages.php?ID=analyze
[29] C.J. Chen, “Introduction to Scanning Tunneling Microscopy”, Oxford University
Press, New York(1993)
[30] H.P. Klug and L.E. Alexander, ”X-Ray diffraction procedure”, John Wiley, New
York(1974)
[31] http://universe-review.ca/I11-41-sem.jpg
[32] E.P. Gusev, M. Copel, “High-resolution depth profiling in ultrathin Al2O3 films
on Si”, Applied Physical Letter 76, 2(2000)
[33] S.A. Nasrallah, A. Bouazra, “Gate leakage properties in(Al2O3/HfO2/Al2O3)dielectric of MOS devices”, Thin Solid Films 517, 456–458(2008)
[34] http://www.sciencenet.cn/blog/user_content.aspx?id=233170
[35] C.L. Aardahl, J.W. Rogers, “Electrical properties of AlN thin films deposited at low temperature on Si(100) ”, Thin Solid Films 346, 174-180(1999)
[36] Y.D. Zheng, P. Chen, R.M. Chu, “Study on the AlN/Si(111) interface properties”, Optical Materials 23, 143-146(2003)
[37] X. Song, R. Fu,“Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering”, Microelectronic Engineering 86, 2217–2221(2009)
[38] K. Jang, S. Jung, J. Lee, ”Optical and electrical properties of negatively charged aluminium oxynitride films”, Thin Solid Films517 ,444–446(2008)