跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮國慶
Nguyen Quoc Khanh
論文名稱: 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
A study on the determination of COD and TN fraction and denitrification performance of wastewater treatment plants
指導教授: 莊順興
‪Shun-hsing Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 143
中文關鍵詞: COD 細分類TN 細分類廢水特性生活廢水工業廢水脫硝
外文關鍵詞: COD fractions, TN fractions, wastewater characteristics, domestic wastewater, industrial wastewater, denitrification
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 活性污泥模型(ASMs)在生物處理程序的多個面向中發揮著重要作用、包括研究、
    設計、控制和優化。工程人員可使用這些模型來進行預測與評估。為了獲得可靠之結果、
    模式模擬必須考慮水質之分解特性的細分類。本研究探討了臺灣生活污水和工業廢水之
    進流水中的化學需氧量(COD)和總氧(TN)比率。COD 比率是通過呼吸測量法進行
    量測、該方法量化了生物降解過程中的氧氣攝取率(OUR)、是一種廣泛應用的技術。
    TN 比率是使用轉換係數和水環境研究基金會(WERF)所描述的直接測量方法進行評
    估。對這些分析結果的比較和總結將確立臺灣廢污水之水質特性方法的適用性。此外、
    將使用典型的 MLE 和 OAO 程序評估 COD 和 TN 比率、並觀察本土水質的脫硝速率、
    從而調整操作參數來增強除氮成效。
    對於本土水質的 COD 細分類結果顯示、未過初沉池的生活污水可以分為以下幾類:
    易降解 COD(SS)約佔 12.6%、緩慢降解 COD(XS)約佔 45.6%、溶解性惰性 COD(SI)
    約佔 3.7%和顆粒性惰性 COD(XI)約佔 38.1%。另一方面、工業廢水的特性為 SS 約
    25.4%、XS約 11.6%、SI約 30.1%和 XI約 32.9%;已過初沉池的生活污水包含 SS約 18.4%、
    XS 約 57.2%、SI 約 6.6%、XI 約 17.8%。另一方面、工業廢水的特性為 SS 約 25.4%、XS
    約 11.6%、SI約 30.1%和 XI約 32.9%。
    根據總氮(TN)的直接測量確立了進流水的分類。在這個分類中,氨氮(SNH)約
    佔 72.9%、溶解性可生物降解有機氮(SND)約佔 5.5%、不可生物降解的顆粒性有機氮
    (XND)約佔 14.2%、溶解性惰性有機氮(SNI)約佔 2.8%、顆粒性惰性有機氮(XNI)約
    佔總氮含量的 4.6%。對於未過初沉池的生活污水樣品、氮比率包括約 62.8%的 SNH、約
    2.9%的 SND、約 18.4%的 XND、約 1.0%的 SNI和約 14.9%的 XNI。在工業廢水中、氮形式
    的分佈因行業類型而異。通常、總氮的主要貢獻為 NO3
    -
    -N 和 NO2
    -
    -N、其中 NO3
    -
    -N 約
    佔 34.1%、NO2
    -
    -N 約佔 16.1%、SNH約佔 20.4%、SND約佔 1.1%、XND 約佔 5.4%、SNI約
    佔 8.0%、XNI 約佔 14.9%。通過利用轉換係數與質量平衡、本研究建議了新的氮轉換係
    數:未過初沉池之生活污水的iN,SS為 0.03、iN,XS為 0.07、iN,SI為 0.05、iN,XI為 0.07;已過
    初沉池之生活污水的iN,SS為 0.06、iN,XS為 0.06、iN,SI為 0.1、iN,XI為 0.06;而工業廢水的
    iN,SS為 0.01、iN,XS為 0.06、iN,SI為 0.02、iN,XI為 0.06。
    當碳氮比(C/N)不足時、脫硝能力受限、由於進流水中碳源不足、從而降低除氮效率。


    Activated sludge models (ASMs) play a significant role in numerous aspects of biological
    treatment processes, including research, design, control, and optimization. Handlers employ
    these models to make forecasts and assessments. To ensure accurate results, the model
    simulation must consider the subdivisions of water quality characteristics. In this study, I
    investigated the proportions of chemical oxygen demand (COD) and total nitrogen (TN) in the
    influent water quality of Taiwanese domestic and industrial wastewater. The determination of
    COD fractions was accomplished through a respirometry assay, which quantifies the oxygen
    uptake rate (OUR) during biodegradation and is a widely employed technique. The TN fractions
    were assessed using the conversion coefficient and the direct measurement method described
    by Water Environment Research Foundation (WERF). The comparative and summarizing
    assessment of the outcomes of these analyses ascertained the suitability of water quality
    characteristic methodologies in Taiwan. Furthermore, the COD and TN fractions were
    evaluated using a typical Modified Ludzack Ettinger (MLE) and Oxic-Anoxic-Oxic (OAO)
    processes, while observing the denitrification rate of local water quality. Operating parameters
    were adjusted to enhance nitrogen removal.
    The detailed classification COD results of local water quality reveal that settled domestic
    wastewater could be categorized as follows: readily biodegradable COD (SS) accounted for
    approximately 18.4%, slowly biodegradable COD (XS) represented around 57.2%, soluble inert
    COD (SI) accounted for approximately 6.6%, and particulate inert COD (XI) contributed about
    17.8%. Raw domestic wastewater, on the other hand, consisted of about 12.6% SS,
    approximately 45.6% XS, around 3.7% SI, and approximately 38.1% XI. Finally, ordinary
    industrial wastewater was characterized by approximately 25.4% SS, around 11.6% XS,
    approximately 30.1% SI, and about 32.9% XI.
    The classification of influent based on TN (Total nitrogen) was determined through direct
    measurement. In this classification, for settled domestic wastewater, ammonia nitrogen (SNH)
    accounted for approximately 72.9%, soluble biodegradable organic nitrogen (SND) accounted
    for around 5.5%, particulate biodegradable organic nitrogen (XND) contributed about 14.2%,
    soluble inert organic nitrogen (SNI) contributed approximately 2.8%, and particulate inert
    organic nitrogen (XNI) accounted for approximately 4.6% of the total nitrogen content. For raw
    domestic wastewater, the nitrogen fractions consisted of approximately 62.8% SNH, SND around
    2.9%, XND about 18.4%, SNI approximately 1.0%, and XNI around 14.9%. In industrial
    wastewater, the distribution of nitrogen forms varied depending on the industry type. Generally,
    iii
    NO3
    -
    -N and NO2
    -
    -N were the major contributors to the total nitrogen content, with NO3
    -
    -N
    accounted for approximately 34.1%, NO2
    -
    -N for around 16.1%, SNH about 20.4%, SND around
    1.1%, XND approximately 5.4%, SNI around 8.0%, and XNI about 14.9% of the total nitrogen
    content. By applying conversion factors and utilizing mass balance, this research had generated
    new nitrogen conversion factors: settled domestic wastewater 0.06 for iN,SS
    , 0.06 for iN,XS
    , 0.1
    for iN,SI
    and 0.06 for iN,XI
    ; raw domestic wastewater 0.03 for iN,SS
    , 0.07 for iN,XS
    , 0.05 for
    iN,SI
    and 0.07 for iN,XI
    ; industrial wastewater 0.01 for iN,SS
    , 0.06 for iN,XS
    , 0.02 for iN,SI
    and
    0.06 for iN,XI
    .
    The denitrification capacity was constrained when the carbon-nitrogen (C/N) ratio was
    insufficient, resulting in low nitrogen removal efficiency attributable to the low carbon source
    in the influent.

    摘要............................................................................................................................................i Abstract......................................................................................................................................ii Acknowledgement..................................................................................................................... v Table of Contents...................................................................................................................... vi List of tables ...........................................................................................................................viii List of figures ............................................................................................................................ x Abbreviations .........................................................................................................................xiii Chapter 1 Introduction............................................................................................................... 1 1-1 Problem identification..................................................................................................... 1 1-2 Objectives........................................................................................................................ 3 Chapter 2 Literature Review...................................................................................................... 4 2-1 Characterization of COD fractions.................................................................................. 4 2-1-1 COD versus BOD as a modeling parameter ............................................................ 5 2-1-2 COD fractions.......................................................................................................... 6 2-1-3 Biological characterization ...................................................................................... 9 2-1-4 Methodology of COD fraction determination........................................................ 14 2-2 Characterization of TKN fractions................................................................................ 24 2-2-1 TKN fractions ........................................................................................................ 24 2-2-2 Methodology of TKN fraction determination........................................................ 25 2-3 Heterotrophic denitrification......................................................................................... 30 2-3-1 Organic carbon sources for denitrification............................................................. 31 2-3-2 Hydrolysis of organic matter.................................................................................. 32 2-3-3 Rate-limiting substrate uptake ............................................................................... 32 Chapter 3 Materials and Methods............................................................................................ 33 3-1 Preparation .................................................................................................................... 33 3-2 Research structure ......................................................................................................... 33 3-3 COD fractions method .................................................................................................. 36 3-3-1 BCOD estimation method...................................................................................... 36 3-3-2 Oxygen uptake rate (OUR) .................................................................................... 37 3-4 TKN fractions method................................................................................................... 45 3-5 Nitrate uptake rate (NUR)............................................................................................. 47 3-6 Experimental materials, equipment and analytical methods......................................... 53 vii 3-6-1 Experimental materials .......................................................................................... 53 3-6-2 Experimental equipment ........................................................................................ 55 3-6-3 Analytical methods................................................................................................. 56 3-6-4 Measure maximum specific growth rate µmax and half substrate saturation constant KS..................................................................................................................................... 56 Chapter 4 Results and Discussion ........................................................................................... 58 4-1 Wastewater characteristics analysis results................................................................... 58 4-2 The optimal initial loading (So/Xo) ............................................................................... 59 4-3 Heterotroph yield coefficient ........................................................................................ 61 4-4 Biodegradable COD...................................................................................................... 65 4-5 Characterization of COD fractions................................................................................ 68 4-5-1 Soluble biodegradable COD value from OUR test................................................ 68 4-5-2 Maximum specific growth rate µmax and half substrate saturation constant KS..... 70 4-5-3 COD fractions........................................................................................................ 73 4-6 Characterization of TN fractions................................................................................... 83 4-7 Denitrification performance .......................................................................................... 88 4-7-1 Acetate as a control model ..................................................................................... 88 4-7-2 Raw wastewater as carbon source.......................................................................... 94 Chapter 5 Conclusions and Recommendations..................................................................... 103 5-1 Conclusions................................................................................................................. 103 5-1-1 COD fractions...................................................................................................... 103 5-1-2 TN fractions ......................................................................................................... 104 5-1-3 Heterotroph denitrification................................................................................... 104 5-2 Recommendations....................................................................................................... 106 References ............................................................................................................................. 107 Appendix ............................................................................................................................... 114

    Æsøy, A., & Ødegaard. (1994). Nitrogen removal efficiency and capacity in biofilms with
    biologically hydrolysed sludge as a carbon source. Water Science Technology, 30(6), 63.
    Alrousan, D., & Murshed, M. (2019). Determination of BOD kinetic parameters of domestic
    and industrial wastewater using different mathematical methods. AIP Conference
    Proceedings,
    Ammary, B. Y., & Al-Samrraie, L. a. A. (2014). Evaluation and comparison of methods used
    for the determination of BOD first-order model coefficients. International Journal of
    Environment and Waste Management, 13(4), 362-375.
    Aquino, S., & Stuckey, D. (2004). The effect of organic and hydraulic shock loads on the
    production of soluble microbial products in anaerobic digesters. Water Environment
    Research, 76(7), 2628-2636.
    Aravinthan, V., Mino, T., Takizawa, S., Satoh, H., & Matsuo, T. (2001). Sludge hydrolysate as
    a carbon source for denitrification. Water Science and Technology, 43(1), 191-199.
    ATV–DVWK, A.-D. (2000). Standard A 131E. Dimensioning of Single-Stage Activated Sludge
    Plants, ATV-DVWK, Water, Wastewater, Waste, Hennef, Germany.
    Azami, H., Sarrafzadeh, M. H., & Mehrnia, M. R. (2012). Soluble microbial products (SMPs)
    release in activated sludge systems: a review. Iranian journal of environmental health
    science & engineering, 9, 1-6.
    Baban, A., Yediler, A., Ciliz, N., & Kettrup, A. (2004). Biodegradability oriented treatability
    studies on high strength segregated wastewater of a woolen textile dyeing plant.
    Chemosphere, 57(7), 731-738.
    Baquero-Rodríguez, G. A., Lara-Borrero, J. A., & Martelo, J. (2016). A simplified method for
    estimating chemical oxygen demand (COD) fractions. Water Practice and Technology,
    11(4), 838-848.
    Barker, D. J., & Stuckey, D. C. (1999). A review of soluble microbial products (SMP) in
    wastewater treatment systems. Water Research, 33(14), 3063-3082.
    Beck, C., LE ROY, K., & SADOWSKI, A. (2005). A coupled sewer system and WWTP
    modelling approach to minimise annual discharge: a case study. Proc. of the 10th
    International Conference on Urban Drainage, Copenhagen/Denmark,
    Benneouala, M. (2017). Biodegradation of slowly biodegradable organic matter in wastewater
    treatment plant (WWTP): In depth analysis of physical and biological factors affecting
    hydrolysis of large particles INSA de Toulouse].
    Bolek, R. (2021). Determination of Readily Biodegradable COD PennTec 2021 - PWEA
    Annual Technical Conference & Exhibition, Pocono Manor, Pennsylvania.
    https://www.alloway.com/events/penntec-2021-pwea-annual-technical-conferenceexhibition
    Borzooei, S., Simonetti, M., Scibilia, G., & Zanetti, M. C. (2021). Critical evaluation of
    respirometric and physicochemical methods for characterization of municipal
    wastewater during wet-weather events. Journal of Environmental Chemical
    Engineering, 9(3), 105238.
    Carley, B. N., & Mavinic, D. S. (1991). The Effects of External Carbon Loading on Nitrification
    and Denitrification of a High Ammonia Landfill Leachate. Research Journal of the
    Water Pollution Control Federation, 63(1), 51-59.
    https://www.jstor.org/stable/25043951
    Carucci, A., Ramadori, R., Rossetti, S., & & Tomei, M. C. (1996). Kinetics of denitrification
    reactions in single sludge systems. Water Research, 30(1), 51-56.
    Chen, R., Deng, M., He, X., & Hou, J. (2017). Enhancing nitrate removal from freshwater pond
    by regulating carbon/nitrogen ratio. Frontiers in microbiology, 8, 1712.
    108
    Chiavola, A., Farabegoli, G., & Antonetti, F. (2014). Biological treatment of olive mill
    wastewater in a sequencing batch reactor. Biochemical Engineering Journal, 85, 71-78.
    Choi, E., & Daehwan, R. (2001). NUR and OUR relationship in BNR processes with sewage
    at different temperatures and its design application. Water Research, 35(7), 1748-1756.
    Choi, Y.-Y., Baek, S.-R., Kim, J.-I., Choi, J.-W., Hur, J., Lee, T.-U., Park, C.-J., & Lee, B. J.
    (2017). Characteristics and biodegradability of wastewater organic matter in municipal
    wastewater treatment plants collecting domestic wastewater and industrial discharge.
    Water, 9(6), 409.
    Cutrera, G., Manfredi, L., del Valle, C. E., & González, J. F. (1999). On the determination of
    the kinetic parameters for the BOD test. WATER SA-PRETORIA-, 25, 377-380.
    Czerwionka, K., & Makinia, J. (2014). Dissolved and colloidal organic nitrogen removal from
    wastewater treatment plants effluents and reject waters using physical–chemical
    processes. Water Science and Technology, 70(3), 561-568.
    Czerwionka, K., Makinia, J., Pagilla, K., & Stensel, H. D. (2012). Characteristics and fate of
    organic nitrogen in municipal biological nutrient removal wastewater treatment plants.
    Water Research, 46(7), 2057-2066.
    Dircks, K., Pind, P. F., Mosbæk, H., & Henze, M. (1999). Yield determination by respirometryThe possible influence of storage under aerobic conditions in activated sludge. WATER
    SA-PRETORIA-, 25, 69-74.
    Dold, P., & Marais, G. v. R. (1986). Evaluation of the general activated sludge model proposed
    by the IAWPRC task group. Water Science and Technology, 18(6), 63-89.
    Drechsel, P., Qadir, M., & Baumann, J. (2022). Water reuse to free up freshwater for higher‐
    value use and increase climate resilience and water productivity. Irrigation and
    Drainage, 71, 100-109.
    Drewnowski, J. (2014). The impact of slowly biodegradable organic compounds on the oxygen
    uptake rate in activated sludge systems. Water Science and Technology, 69(6), 1136-
    1144.
    Drewnowski, J., Remiszewska-Skwarek, A., Fudala-Ksiazek, S., Luczkiewicz, A., Kumari, S.,
    & Bux, F. (2019). The evaluation of COD fractionation and modeling as a key factor for
    appropriate optimization and monitoring of modern cost-effective activated sludge
    systems. Journal of Environmental Science and Health, Part A, 54(8), 736-744.
    Drewnowski, J., Szeląg, B., Xie, L., Lu, X., Ganesapillai, M., Deb, C. K., Szulżyk-Cieplak, J.,
    & Łagód, G. (2020). The Influence of COD fraction forms and molecules size on
    hydrolysis process developed by comparative our studies in activated sludge modelling.
    Molecules, 25(4), 929.
    Ekama, G., Dold, P., & Marais, G. v. R. (1986). Procedures for determining influent COD
    fractions and the maximum specific growth rate of heterotrophs in activated sludge
    systems. Water Science and Technology, 18(6), 91-114.
    Ekama, G., Sötemann, S., & Wentzel, M. (2006). Mass balance-based plant-wide wastewater
    treatment plant models–Part 3: Biodegradability of activated sludge organics under
    anaerobic conditions. Water Sa, 32(3), 287-296.
    El Sheikh, R., GOUDA, A., Salem, A., & Hendy, I. (2016). Analysis and Characterization of
    Wastewater Nitrogen Components for using in Wastewater Modeling and Simulation.
    International Journal of Advanced Research in Chemical Science, 3, 2349-
    0403.0305004.
    Elshorbagy, W., & Shawaqfah, M. (2015). Development of an ASM1 dynamic simulation
    model for an activated sludge process in United Arab Emirates. Desalination and Water
    Treatment, 54(1), 15-27.
    Federation, W. E., & Association, A. (2005). Standard methods for the examination of water
    and wastewater. American Public Health Association (APHA): Washington, DC, USA,
    109
    21.
    Fonseca, A. D., Crespo, J. G., Almeida, J. S., & Reis, M. A. (2000). Drinking water
    denitrification using a novel ion-exchange membrane bioreactor. Environmental science
    & technology, 34(8), 1557-1562.
    Germirli, F., Orhon, D., & Artan, N. (1991). Assessment of the initial inert soluble COD in
    industrial wastewaters. Water Science and Technology, 23(4-6), 1077-1086.
    Grady Jr, C. L., Daigger, G. T., Love, N. G., & Filipe, C. D. (2011). Biological wastewater
    treatment. CRC press.
    Gujer, W. (2006). Activated sludge modelling: past, present and future. Water Science and
    Technology, 53(3), 111-119.
    Gujer, W., Henze, M., Mino, T., Matsuo, T., Wentzel, M., & Marais, G. (1995). The activated
    sludge model No. 2: biological phosphorus removal. Water Research, 31(2), 1-11.
    Gujer, W., Henze, M., Mino, T., & Van Loosdrecht, M. (1999). Activated sludge model No. 3.
    Water Science and Technology, 39(1), 183-193.
    Guo, L., Guo, Y., Sun, M., Gao, M., Zhao, Y., & She, Z. (2018). Enhancing denitrification with
    waste sludge carbon source: the substrate metabolism process and mechanisms.
    Environmental Science and Pollution Research, 25, 13079-13092.
    Gupta, M., Giaccherini, F., Sridhar, G. R. D., Batstone, D., Santoro, D., & Nakhla, G. (2018).
    Application of respirometric techniques to determine COD fractionation and biokinetic
    parameters of sieved wastewater. Proc Water Environ Feder, 2018, 106-121.
    Güven, D. (2009). Effects of different carbon sources on denitrification efficiency associated
    with culture adaptation and C/N ratio. CLEAN–Soil, Air, Water, 37(7), 565-573.
    Hallin, S., & & Pell, M. (1998). Metabolic properties of denitrifying bacteria adapting to
    methanol and ethanol in activated sludge. Water Research, 31(1), 13-18.
    Henze, M. (1986). Nitrate versus oxygen utilization rates in wastewater and activated sludge
    systems. Water Science and Technology, 18(6), 115-122.
    Henze, M. (1992). Characterization of wastewater for modelling of activated sludge processes.
    Water Science and Technology, 25(6), 1-15.
    Henze, M., Grady, C., Gujer, W., Marais, G. v. R., & Matsuo, T. (1987). Activated Sludge Model
    No. 1. Scientific and Technical Report, No. 1, IAWPRC, London.
    Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., Marais, G. v. R., & Van Loosdrecht,
    M. (1995). Activated Sludge Model No. 2, IAWQ. Scientific and Technical Report No.
    3, IAWQ.
    Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R., & Van Loosdrecht,
    M. C. (1999). Activated sludge model no. 2d, ASM2d. Water Science and Technology,
    39(1), 165-182.
    Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. (2000). Activated sludge models
    ASM1, ASM2, ASM2d and ASM3. IWA publishing.
    Henze, M., Holm Kristensen, G., & Strube, R. (1994). Rate-capacity characterization of
    wastewater for nutrient removal processes. Water Science and Technology, 29(7), 101-
    107.
    Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (2008). Biological
    wastewater treatment. IWA publishing.
    Her, J. J., & & Huang, J. S. (1995). Influences of carbon source and C/N ratio on nitrate/nitrite
    denitrification and carbon breakthrough. Bioresource technology, 54(1), 45-51.
    How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T., & Curtis, T. P. (2019). Enhanced nitrogen
    removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater:
    low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for
    denitrification. Science of the Total Environment, 693, 133526.
    How, S. W., Sin, J. H., Wong, S. Y. Y., Lim, P. B., Mohd Aris, A., Ngoh, G. C., Shoji, T., Curtis,
    110
    T. P., & Chua, A. S. M. (2020). Characterization of slowly-biodegradable organic
    compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen
    removal. Water Science and Technology, 81(1), 71-80.
    Hulsbeek, J., Kruit, J., Roeleveld, P., & Van Loosdrecht, M. (2002). A practical protocol for
    dynamic modelling of activated sludge systems. Water Science and Technology, 45(6),
    127-136.
    Insel, G., Karahan Gül, Ö., Orhon, D., Vanrolleghem, P., & Henze, M. (2002). Important
    limitations in the modeling of activated sludge: biased calibration of the hydrolysis
    process. Water Science and Technology, 45(12), 23-36.
    Insel, G., Orhon, D., & Vanrolleghem, P. A. (2003). Identification and modelling of aerobic
    hydrolysis–application of optimal experimental design. Journal of Chemical
    Technology & Biotechnology: International Research in Process, Environmental &
    Clean Technology, 78(4), 437-445.
    Isaacs, S. H., & Henze, M. (1995). Controlled carbon source addition to an alternating
    nitrification-denitrification wastewater treatment process including biological P
    removal. Water Research, 29(1), 77-89.
    Jiang, T., Myngheer, S., De Pauw, D. J., Spanjers, H., Nopens, I., Kennedy, M. D., Amy, G., &
    Vanrolleghem, P. A. (2008). Modelling the production and degradation of soluble
    microbial products (SMP) in membrane bioreactors (MBR). Water Research, 42(20),
    4955-4964.
    Kim, I. S., Young, J. C., Kim, S., & Kim, S. (2001). Development of monitoring methodology
    to fingerprint the activated sludge processes using oxygen uptake rate. Environmental
    Engineering Research, 6(4), 251-259.
    Köhler, C. (2008). COD Fractions Dynamics: Respirometric Analysis & Modelling Sewer
    Processes. Université Laval, Quebec, QC, Canada.
    Kujawa-Roeleveld, K. (2000). Estimation of denitrification potential with respiration based
    techniques. Wageningen University and Research.
    Levine, A. D., Tchobanoglous, G., & Asano, T. (1985). Characterization of the size distribution
    of contaminants in wastewater: treatment and reuse implications. Water Pollution
    Control Federation, 805-816.
    Liu, B., Terashima, M., Quan, N. T., Ha, N. T., Van Chieu, L., Goel, R., & Yasui, H. (2018).
    Determination of optimal dose of allylthiourea (ATU) for the batch respirometric test of
    activated sludge. Water Science and Technology, 77(12), 2876-2885.
    Liu, G. Y., Zhang, H. Z., Li, W., & & Zhang, X. (2012). Advances of external carbon source in
    denitrification. Advanced Materials Research, 518, 2319-2323.
    Makinia, J., Pagilla, K., Czerwionka, K., & Stensel, H. D. (2011). Modeling organic nitrogen
    conversions in activated sludge bioreactors. Water Science and Technology, 63(7),
    1418-1426.
    Mardani, S., Mirbagheri, A., Amin, M., & Ghasemian, M. (2011). Determination of biokinetic
    coefficients for activated sludge processes on municipal wastewater. Journal of
    Environmental Health Science & Engineering, 8(1), 25-34.
    Marquot, A., Stricker, A.-E., & Racault, Y. (2006). ASM1 dynamic calibration and long-term
    validation for an intermittently aerated WWTP. Water Science and Technology, 53(12),
    247-256.
    Mazumder, D., & Bhaduri, S. (2020). Simplistic approach for evaluating the BOD rate constants.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 97(9 A), 1399-1405.
    Melcer, H., Dold, P. L., Jones, R. M., Bye, C. M., Takacs, I., Stensel, H. D., Wilson, A. W., Sun,
    P., & & Bury, S. (2003). Methods for Wastewater Characterization in Activated Sludge
    Modeling.
    Mesquita, P. d. L., Aquino, S. F. d., Xavier, A., Silva, J., Afonso, R., & Silva, S. Q. (2010).
    111
    Soluble microbial product (SMP) characterization in bench-scale aerobic and anaerobic
    CSTRs under different operational conditions. Brazilian Journal of Chemical
    Engineering, 27, 101-111.
    Metcalf, Eddy, Abu-Orf, M., Bowden, G., Burton, F. L., Pfrang, W., Stensel, H. D.,
    Tchobanoglous, G., Tsuchihashi, R., & AECOM. (2014). Wastewater engineering:
    treatment and resource recovery. McGraw Hill Education.
    Metcalf & Eddy, I. (2003). Wastewater engineering : treatment and reuse. Fourth edition /
    revised by George Tchobanoglous, Franklin L. Burton, H. David Stensel. Boston :
    McGraw-Hill, [2003] ©2003.
    https://search.library.wisc.edu/catalog/999935704402121
    Mhlanga, F., Foxon, K., Fennemore, C., Mzulwini, D., & Buckley, C. (2009). Simulation of a
    wastewater treatment plant receiving industrial effluents. Water Sa, 35(4).
    Morgenroth, E., Kommedal, R., & Harremoës, P. (2002). Processes and modeling of hydrolysis
    of particulate organic matter in aerobic wastewater treatment–a review. Water Science
    and Technology, 45(6), 25-40.
    Myszograj, S., Płuciennik-Koropczuk, E., & Jakubaszek, A. (2017). COD fractions-methods of
    measurement and use in wastewater treatment technology. Civil and Environmental
    Engineering Reports, 24(1), 195-206.
    Naghizadeh, A., Mahvi, A., Mesdaghinia, A., & Sarkhosh, M. (2008). Bio-kinetic paramters in
    municipal wastewater treatment with a submerged membrane reactor (SMBR).
    Proceeding of 12 th National Congress of Environmental Health,
    Orhon, D., Insel, G., & Karahan, O. (2007). Respirometric assessment of biodegradation
    characteristics of the scientific pitfalls of wastewaters. Water Science and Technology,
    55(10), 1-9.
    Pala, A., & Bölükbaş, Ö. (2005). Evaluation of kinetic parameters for biological CNP removal
    from a municipal wastewater through batch tests. Process Biochemistry, 40(2), 629-635.
    Pehlivanoglu-Mantas, E., & Sedlak, D. L. (2006). Wastewater-derived dissolved organic
    nitrogen: analytical methods, characterization, and effects—a review. Critical Reviews
    in Environmental Science and Technology, 36(3), 261-285.
    Pehlivanoglu, E., & Sedlak, D. L. (2004). Bioavailability of wastewater-derived organic
    nitrogen to the alga Selenastrum Capricornutum. Water Research, 38(14-15), 3189-
    3196.
    Phillips, H., Sahlstedt, K., Frank, K., Bratby, J., Brennan, W., Rogowski, S., Pier, D., Anderson,
    W., Mulas, M., & Copp, J. (2009). Wastewater treatment modelling in practice: a
    collaborative discussion of the state of the art. Water Science and Technology, 59(4),
    695-704.
    Płuciennik-Koropczuk, E., Jakubaszek, A., Myszograj, S., & Uszakiewicz, S. (2017). COD
    fractions in mechanical-biological wastewater treatment plant. Civil and Environmental
    Engineering Reports, 24(1), 207-217.
    Pluciennik-Koropczuk, E., & Myszograj, S. (2019). New approach in COD fractionation
    methods. Water, 11(7), 1484.
    Puyol, D., Batstone, D. J., Hülsen, T., Astals, S., Peces, M., & Krömer, J. O. (2017). Resource
    recovery from wastewater by biological technologies: opportunities, challenges, and
    prospects. Frontiers in microbiology, 7, 2106.
    Qadir, M., & Sato, T. (2016). Water reuse in arid zones.
    Ravndal, K. T., Opsahl, E., Bagi, A., & Kommedal, R. (2018). Wastewater characterisation by
    combining size fractionation, chemical composition and biodegradability. Water
    Research, 131, 151-160.
    Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and
    applications. McGraw-Hill Education.
    112
    Roeleveld, P., & Van Loosdrecht, M. (2002). Experience with guidelines for wastewater
    characterisation in The Netherlands. Water Science and Technology, 45(6), 77-87.
    Rossle, W., & Pretorius, W. (2001). A review of characterisation requirements for in-line
    prefermenters
    Paper 1: Wastewater characterisation. Water Sa, 27(3), 405-412. doi:10.4314/wsa.v27i3.4985
    Sage, M., Daufin, G., & Gésan-Guiziou, G. (2006). Denitrification potential and rates of
    complex carbon source from dairy effluents in activated sludge system. Water Research,
    40(14), 2747-2755.
    Shao, M., Guo, L., She, Z., Gao, M., Zhao, Y., Sun, M., & Guo, Y. (2019). Enhancing
    denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation
    liquid as external carbon source. Environmental Science and Pollution Research, 26,
    4633-4644.
    Sibil, R., Berkun, M., & Bekiroglu, S. (2014). The comparison of different mathematical
    methods to determine the BOD parameters, a new developed method and impacts of
    these parameters variations on the design of WWTPs. Applied Mathematical Modelling,
    38(2), 641-658.
    Siegrist, H., & Tschui, M. (1992). Interpretation of experimental data with regard to the
    activated sludge model no. 1 and calibration of the model for municipal wastewater
    treatment plants. Water Science and Technology, 25(6), 167-183.
    Sin, G., Van Hulle, S. W., De Pauw, D. J., Van Griensven, A., & Vanrolleghem, P. A. (2005). A
    critical comparison of systematic calibration protocols for activated sludge models: A
    SWOT analysis. Water Research, 39(12), 2459-2474.
    Slade, A. H., & Dare, P. H. (1993). Measuring maximum specific growth rate and half saturation
    coefficient for activated sludge systems using a freeze concentration technique. Water
    Research, 27(12), 1793-1795.
    Smyk, J., & Ignatowicz, K. (2015). COD fractions changes during sewage treatment with
    constructed wetland. Journal of Ecological Engineering, 16(3), 43-48.
    Sophonsiri, C., & Morgenroth, E. (2004). Chemical composition associated with different
    particle size fractions in municipal, industrial, and agricultural wastewaters.
    Chemosphere, 55(5), 691-703.
    Spanjers, H. (1993). Respirometry in activated sludge. Wageningen University and Research.
    Spanjers, H., Vanrolleghem, P., Olsson, G., & Doldt, P. (1996). Respirometry in control of the
    activated sludge process. Water Science and Technology, 34(3-4), 117-126.
    Spérandio, M., Paul, E., Bessière, Y., Liu, Y. J. B. S. M., & Technologies, B. B. R. (2012).
    Sludge Production: Quantification and Prediction for Urban Treatment Plants and
    Assessment of Strategies for Sludge Reduction. 81-116.
    Struk-Sokołowska, J. (2015). COD fraction changes in the process of municipal and dairy
    wastewater treatment in SBR reactors Bialystok University of Technology Bialystok,
    Poland].
    Struk-Sokolowska, J., & Tkaczuk, J. (2018). Analysis of bakery sewage treatment process
    options based on COD fraction changes. Journal of Ecological Engineering, 19(4).
    SUTARI, M. (2018). Wastewater chemistry and characterization - Nitrogen fractions SWIMH2020 SM – Sustainable Water Integrated Management and Horizon 2020 Support
    Mechanism, Beirut, Lebanon https://www.swim-h2020.eu/
    Tam, N. F. Y., Wong, Y. S., & & Leung, G. (1992). Significance of external carbon sources on
    simultaneous removal of nutrients from wastewater. Water Science and Technology,
    26(5-6), 1047-1055.
    Tas, D. O., Karahan, Ö., I˙ nsel, G., Övez, S., Orhon, D., & Spanjers, H. (2009).
    Biodegradability and denitrification potential of settleable chemical oxygen demand in
    domestic wastewater. Water Environment Research, 81(7), 715-727.
    113
    Torrijos, M., Cerro, R.-M., Capdeville, B., Zeghal, S., Payraudeau, M., & Lesouef, A. (1994).
    Sequencing batch reactor: A tool for wastewater characterization for the IAWPRC
    model. Water Science and Technology, 29(7), 81-90.
    Uribe Santos, G. A. (2021). A Pilot Scale-Study at the Nine Springs Wastewater Treatment Plant:
    Seasonal Cod and F/M Ratio Trends and Their Application To Modeling Treatment
    Processes
    Van Haandel, A., Ekama, G., & Marais, G. (1981). The activated sludge process—3 single
    sludge denitrification. Water Research, 15(10), 1135-1152.
    van Loosdrecht, M. C., & Brdjanovic, D. (2014). Anticipating the next century of wastewater
    treatment. Science, 344(6191), 1452-1453.
    van Loosdrecht, M. C., Nielsen, P. H., Lopez-Vazquez, C. M., & Brdjanovic, D. (2016).
    Experimental methods in wastewater treatment. IWA publishing.
    Vanrolleghem, P. A., Insel, G., Petersen, B., Sin, G., De Pauw, D., Nopens, I., Weijers, S., &
    Gernaey, K. (2003). A comprehensive model calibration procedure for activated sludge
    models. Proceedings of WEFTEC,
    Verstraete, W., Van de Caveye, P., & Diamantis, V. (2009). Maximum use of resources present
    in domestic “used water”. Bioresource technology, 100(23), 5537-5545.
    Wang, X., McCarty, P. L., Liu, J., Ren, N.-Q., Lee, D.-J., Yu, H.-Q., Qian, Y., & Qu, J. (2015).
    Probabilistic evaluation of integrating resource recovery into wastewater treatment to
    improve environmental sustainability. Proceedings of the National Academy of Sciences,
    112(5), 1630-1635.
    Wentzel, M. C., Ekama, G., & Sotemann, S. (2006). Mass balance-based plant-wide wastewater
    treatment plant models-Part 1: Biodegradability of wastewater organics under anaerobic
    conditions. Water Sa, 32(3), 269-275.
    Wu, J. (2007). Characterization of activated sludge processes by particle and floc analysis
    Loughborough University].
    Xu, S., & Zheng, Q. (2021). Analysis the Influencing Factors of Toxic Substances Toxicity
    Threshold on Biological Wastewater Treatment. IOP Conference Series: Earth and
    Environmental Science,
    Yu, G.-H., He, P.-J., Shao, L.-M., & Zhu, Y.-S. (2008). Extracellular proteins, polysaccharides
    and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water
    Research, 42(8-9), 1925-1934.
    Zawilski, M., & Brzezińska, A. (2009). Variability of COD and TKN Fractions of Combined
    Wastewater. Polish Journal of Environmental Studies, 18(3).
    Zhang, J., Shao, Y., Liu, G., Qi, L., Wang, H., Xu, X., & Liu, S. (2021). Wastewater COD
    characterization: RBCOD and SBCOD characterization analysis methods. Scientific
    Reports, 11(1), 1-10.
    Zhang, Y., Wang, X. C., Cheng, Z., Li, Y., & Tang, J. (2016). Effect of fermentation liquid from
    food waste as a carbon source for enhancing denitrification in wastewater treatment.
    Chemosphere, 144, 689-696.
    Zorn, P. (1998). Multivariable Calculus from Graphical, Numerical, and Symbolic Points of
    View. Saunders College Pub.

    QR CODE
    :::