跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥名
Yen-Ming Chen
論文名稱: 水凝膠嫁接不同序列寡肽用以無異種培養人類多功能幹細胞
Hydrogels Grafted with Different Oligo-peptide Sequence for Xeno-free Culture of Human Pluripotent Stem Cells
指導教授: 樋口亞紺
Akon Higuchi
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 105
中文關鍵詞: 幹細胞寡肽人類多功能幹細胞人類胚胎幹細胞人類誘導多功能幹細胞無異種培養
外文關鍵詞: stem cell, oligopeptide, human pluripotent stem cell, human embryonic stem cell, human induced pluripotent stem cell, xeno-free culture
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類多功能幹細胞具有很高的治療疾病潛力,而利用合成的生醫材料培養幹細胞相較於飼養層的培養,提供了較低的成本、較高的再現性且無異種汙染問題。因此,本研究將人類胚胎幹細胞(WA09)及人類誘導多功能幹細胞(HPS0077)培養在具不同奈米片段的生醫材料上。本研究中,我們先在培養盤上覆蓋一層乙烯醇-衣康酸共聚物 (PVA-IA) 的高分子膜並將表面硬度調整為25.3 kPa後,在表面嫁接上源自細胞外基質的貼附細胞寡肽。這些寡肽取自不同的人類蛋白,有玻璃粘連蛋白 (vitronectin, KGGPQVTRGDVFTMP), 骨唾液酸蛋白 (bone sialoprotein, KGGNGEPRGDTYRAY), 肝素鍵結端多肽 (heparin binding domain peptide, GKKQRFRHRNRKG)。除了基本單鏈結構的寡肽外 (O-VN1),本研究也設計了長鏈 (O-VN2G, GGGGKGGPQVTRGDVFTMP)及雙鏈結構 (O-VN2C, GCGGKGGPQVTRGDVFTMP)。因為O-VN2C具有半胱氨酸 (cysteine) 所以在嫁接過程中會自動形成雙硫鍵,所以這個雙鏈序列會有較高的表面寡肽密度。此外,本研究也以二次活化及嫁接的方式設計了樹枝鏈結構。藉著活化第一次嫁接的寡肽序列,我們能將細胞貼覆寡肽嫁接於第一個序列上來形成樹枝鏈結構。藉由培養人類多功能幹細胞於不同改質後的表面來探討對細胞的不同影響。


    Human pluripotent stem cells (hPSCs) have significant potential in therapeutic applications for many diseases. The feeder-free cultures using synthetic biomaterials as stem cell culture materials offer more reproducible culture conditions and lower the cost of production without introducing xenogeneic contaminants. Therefore, we investigated hESCs (H9) and human induced pluripotent stem cells (hiPSCs, HPS0077) culture on biomaterials grafted with different sequence of nanosegments.
    We prepared dishes coated with polyvinylalcohol-co-itaconic acid (PVA-IA) hydrogels having optimal elasticity of 25.3 kPa storage modulus, and grafted with extracellular matrix (ECM)-derived cell-adhesion peptides. hPSCs were cultured in a chemically defined medium on PVA-IA hydrogels grafted with oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP), bone sialoprotein (KGGNGEPRGDTYRAY), heparin binding domain peptide (GKKQRFRHRNRKG), and also two other sequences that are modified from basic oligo-vitronectin, of which we call VN2C (GCGGKGGPQVTRGDVFTMP) and VN2G (GGGGKGGPQVTRGDVFTMP). VN2C contains cysteine (C) amino acid containing sulfur element, which allows that two VN2C peptides form a dimer structure by S-S bonding spontaneously in atmosphere, so this sequence of oligopeptide (VN2C) is expected to have a higher surface density of oligopeptides compared to other oligopeptide. Besides, we also design a branch type oligopeptide structure by using dual activation and grafting methods. Following the reaction of oligopeptide on PVA-IA hydrogels after the first time grafting, another oligopeptide was subsequently grafted to create a branch-like structure. hPSC were expanded on each nanobrush (oligopeptide) grafted hydrogels with different nanobrush design and discussed the optimal design of nanosegments.

    Outline Introduction 1 Ⅰ-Ⅰ Stem Cells 1 I-I-I Stem Cells and Stem Cell Therapy 1 I-I-II Human Embryonic Stem Cells (hESCs) 2 I-I-III Human Induced Pluripotent Stem Cells (hiPSCs) 3 I-I-IV Human Multipotent Stem Cells 4 Ⅰ-Ⅱ Human Pluripotent Stem Cells Culture 5 I-II-I Materials for hPSCs Culture 5 I-II-I-I Extracellular Matrices (ECMs) Coated Surfaces 6 I-II-I-II Polysaccharide-immobilized Surfaces for hPSCs Culture 8 I-II-I-III Polymeric Materials for hPSCs Culture 9 I-II-I-III-I Synthetic Polymers 9 I-II-I-III-II Oligopeptide Immobilized Surfaces 11 I-II-I-III-III 3D culture of hPSCs 12 I-II-I-III-IV Thermoresponsive Materials for hPSCs Culture 13 Ⅰ-Ⅱ-Ⅱ Influence of Different Environment on hPSCs 14 Ⅰ-Ⅲ Characterization of Human Pluripotent Stem Cells 16 I-III-I Colony Formation 17 I-III-II Alkali Phosphatase Activity 18 I-III-III Pluripotent Gene Expression 18 I-III-IV Pluripotent Protein Expression 18 I-III-V Differentiation Ability 19 I-III-VI Immunofluorescence 20 Ⅱ. Material and Methods 22 Ⅱ-Ⅰ Material 22 II-I-I Cell Line 22 II-I-II Commercial Coated Dishes 22 II-I-III Medium and Others 22 II-I-IV Synthetic Material – PVA-IA Dishes 22 II-I-V Immunostaining 23 Ⅱ-Ⅱ Cell Culture 23 II-II-I Preparation of PVA-IA Cell Culture Surfaces 23 II-II-II XPS Analysis of Dish Surfaces 26 II-II-III Methods of Culturing and Passaging hPSCs 26 II-II-IV Cryopreservation of Human Pluripotent Stem Cells 27 II-II-V Thaw of Human Pluripotent Stem Cells 28 Ⅱ-III Characterization of Human Pluripotent Stem Cells 28 II-III-I Immunostaining 28 II-III-II Expansion Fold and Doubling Time of hPSCs 30 II-III-III Differentiation Ratio of hPSCs 30 II-III-IV Differentiation Ratio of hPSCs 31 II-III-V Embryoid Body Formation 31 II-III-VI Teratoma Formation 32 Ⅲ. Result and Discussion 33 Ⅲ-I Characterization of Oligopeptide-Grafted Surfaces 33 Ⅲ-II Cultivation of hPSCs on Oligopeptide-Grafted Surfaces 40 III-II-I Short Term Culture of hESCs: Condition Screening 40 III-II-II Long Term Culture of hPSCs 49 III-II-III Characterization of hPSCs after Long Term Culture 55 III-II-III-I Immunostaining of Pluripotent Genes 55 III-II-III-II Differentiation Ability In Vitro – Embryoid Body Formation 59 Ⅳ. Conclusions 64 Supplement Data 66 Supplement tables 66

    [1] Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
    [2] Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
    [3] Akon Higuchi., et al., Generation of pluripotent stem cells without the use of genetic material. Laboratory Investigation (2015) 95, 26–42
    [4] Mark Richards., et al., Comparative Evaluation of Various Human Feeders for ProlongedUndifferentiated Growth of Human Embryonic Stem Cells. STEM CELLS 2003;21:546-556
    [5] Xu C., et al., Basicfibroblast growth factor supports undifferentiated human embry-onic stem cell growth without conditioned medium. Stem Cells 2005;23:315–23.
    [6] Akopian V., et al., Comparison of defined culture systems for feeder cell free propagation of human embryonic stemcells. In Vitro Cell Dev-An 2010;46:247–58.
    [7] Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A,Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, OgilvieC, Braude P. Derivation and feeder-free propagation of humanembryonic stem cells under xeno-free conditions. Cytotherapy2012;14:122–8. regulating uterine contractility. Hum Reprod Update, 2010. 16(6): p. 725-44
    [8] Abraham S, Sheridan SD, Miller B, Rao RR. Stable propagation ofhuman embryonic and induced pluripotent stem cells on decellu-larized human substrates. Biotechnol Prog 2010;26:1126–34.
    [9] Fu X, Toh WS, Liu H, Lu K, Li M, Cao T. Establishment of clinicallycompliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng C 2011;17:927–37.
    [10] Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Extracellularmatrix isolated from foreskin fibroblasts supports long-termxeno-free human embryonic stem cell culture. Stem Cells Dev2010;19:547–56.
    [11] Stelling MP, Lages YM, Tovar AM, Mourao PA, Rehen SK. Matrix-bound heparan sulfate is essential for the growth and pluripotencyof human embryonic stem cells. Glycobiology 2013;23:337–45.Braam, S.R., et al.,
    [12] Braam SR., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
    [13] Andrew B.J. Prowse., et al., Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials, 31, 2010, 8281-8288
    [14] Hyeong-Taek Kim., et al., An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials, 34, 2013, 1041-1050
    [15] Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
    [16] Masato Nakagawa., et al., A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. SCIENTIFIC REPORTS | 4 : 3594 | DOI: 10.1038/srep03594
    [17] U. Ullmann., et al., Epithelial–mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Molecular Human Reproduction Vol.13, No.1 pp. 21–32, 2007
    [18] Nagaoka M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol. 2010 Jun 2;10:60. doi: 10.1186/1471-213X-10-60.
    [19] Higuchi A, Ling QD, Ko YA, Chang Y, Umezawa A. Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev 2011;111:3021–35.
    [20] Li, Z.S., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-412.
    [21] Liu, Y.X., et al., Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Macromolecular Bioscience, 2012. 12(8): p. 1034-1042.
    [22] Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
    [23] Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC. A 3Dmicrofibrous scaffold for long-term human pluripotent stem cellself-renewal under chemically defined conditions. Biomaterials2012;33:2419–30.
    [24] Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
    [25] Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11298-303.
    [26] Hong Fang Lu., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33 (2012) 2419e2430
    [27] Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
    [28] Villa-Diaz LG., et al., Synthetic polymer coatingsfor long-term growth of human embryonic stem cells. Nat Biotech-nol 2010;28:581–3.
    [29] Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
    [30] Chien-Wen Chang., et al., Engineering cellematerial interfaces for long-term expansion of human pluripotent stem cells. Biomaterials 34 (2013) 912-921
    [31] Hyun-Ji Park., et al., Bio-inspired oligovitronectin-grafted surface for enhanced selfrenewal and long-term maintenance of human pluripotent stem cells under feeder-free conditions. Biomaterials, 50, 2015, 127-139
    [32] Y. Deng., et al., Long-term self-renewal of human pluripotent stem cells on peptide decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions. Acta Biomaterialia, 9, 2013, 8840–8850
    [33] Siqin Wu., et al., Spider silk for xeno-free long-term self-renewal and differentiation of human pluripotent stem cells. Biomaterials, 35, 2014, 8496-8502
    [34] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
    [35] Samira Musah., et al., Glycosaminoglycan-Binding Hydrogels Enable Mechanical Control of Human Pluripotent Stem Cell Self-Renewal. Acsnano. VOL. 6 ’ NO. 11 ’ 10168–10177 ’ 2012
    [36] Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
    [37] Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
    [38] Xiaoli Chen., et al., Thermoresponsive Worms for Expansion and Release of Human Embryonic Stem Cells. Biomacromolecules 2014, 15, 844−855
    [39] Li, Z.S., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-412.
    [40] Yuguo Leia., et al., A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. PNAS, November 18, 2013 | E5039–E5048
    [41] Keming Xu, et al., Enzyme-mediated hyaluronic acid–tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomaterialia 24 (2015) 159–171
    [42] Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev, 2013. 113(5): p. 3297-328.
    [43] Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
    [44] Maricela Maldonado., et al., The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. 14 February 2015, 10e19
    [45] Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation.Chem Rev 2012;112:4507–40.
    [46] Li J, Bardy J, Yap LY, Chen A, Nurcombe V, Cool SM, Oh SK, Birch WR.Impact of vitronectin concentration and surface properties on thestable propagation of human embryonic stem cells. Biointerphases2010;5. FA132-42.
    [47] Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, ChoSW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC,Alexander MR, Langer R, Jaenisch R, Anderson DG. Combinatorialdevelopment of biomaterials for clonal growth of human pluripo-tent stem cells. Nat Mater 2010;9:768–78.
    [48] Higuchi A, Tamiya S, Tsubomura T, Katoh A, Cho CS, Akaike T,Hara M. Growth of L929 cells on polymeric films prepared byLangmuir-Blodgett and casting methods. J Biomat Sci – Polym Ed2000;11:149–68.
    [49] Paul J. Wrighton., et al., Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins. PNAS 2014; vol. 111 no. 51. 18126–18131
    [50] Yanyi Xu., et al., Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomaterialia 26 (2015) 23–33
    [51] Higuchi, A., et al., Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Scientific Reports | 5:18136 | DOI: 10.1038/srep18136
    [52] Campbell, K.H., et al., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996. 380(6569): p. 64-6.
    [53] Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
    [54] Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
    [55] Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142.
    [56] Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
    [57] Kim, B.S., et al., Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011. 36(2): p. 238-268.
    [58] Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
    [59] Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nature Biotechnology, 2005. 23(6): p. 699-708.
    [60] Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
    [61] Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
    [62] Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
    [63] Phillips, B., et al., Attachment and growth of human embryonic stem cells on microcarriers (vol 138, pg 24, 2008). Journal of Biotechnology, 2009. 139(2): p. 194-194.
    [64] Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 2006. 367(9505): p. 113-121.
    [65] Serra, M., et al., Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8): p. e23212.
    [66] Steiner, D., et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p. 361-4.
    [67] O'Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
    [68] Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
    [69] Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
    [70] Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
    [71] Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
    [72] Xu, C., et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 2005. 23(3): p. 315-23.
    [73] Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
    [74] Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
    [75] Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
    [76] Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
    [77] Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
    [78] Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
    [79] Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
    [80] Sjogren-Jansson, E., et al., Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn, 2005. 233(4): p. 1304-14.
    [81] Odell, I.D. and D. Cook, Immunofluorescence techniques. J Invest Dermatol, 2013. 133(1): p. e4.
    [82] Ameen, C., et al., Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol, 2008. 65(1): p. 54-80.
    [83] Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
    [84] Peiffer, I., et al., Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev, 2008. 17(3): p. 519-33.
    [85] Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun, 2008. 375(1): p. 27-32.
    [86] Zhou, J., et al., mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A, 2009. 106(19): p. 7840-5.
    [87] Su, Z., et al., Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res, 2008. 14(19): p. 6207-17.
    [88] Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
    [89] Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
    [90] Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
    [91] Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
    [92] Tachibana, M., et al., Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013. 153(6): p. 1228-38.
    [93] Chung, Y.G., et al., Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell, 2014.7. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
    [94] Ilic D, Stephenson E, Wood V, Jacquet L, Stevenson D, Petrova A,Kadeva N, Codognotto S, Patel H, Semple M, Cornwell G, OgilvieC, Braude P. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy2012;14:122–8. regulating uterine contractility. Hum Reprod Update, 2010. 16(6): p. 725-44
    [95] Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Extracellular matrix isolated from foreskin fibroblasts supports long-termxeno-free human embryonic stem cell culture. Stem Cells Dev2010;19:547–56.
    [96] Manton KJ, Richards S, Van Lonkhuyzen D, Cormack L, Leavesley D,Upton Z. A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells. StemCells Dev 2010;19:1297–305.
    [97] Meng GL, Liu SY, Rancourt DE. Synergistic effect of medium, matrix,and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. StemCells Dev 2012;21:2036–48.
    [98] Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
    [99] Liu, Y.X., et al., Modified Hyaluronan Hydrogels Support the Maintenance of Mouse Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Macromolecular Bioscience, 2012. 12(8): p. 1034-1042.
    [100] Gerecht, S., et al., Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A, 2007. 104(27): p. 11298-303.
    [101] Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature Protocols, 2011. 6(7): p. 1037-1043.
    [102] Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
    [103] Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
    [104] Odell, I.D. and D. Cook, Immunofluorescence techniques. J Invest Dermatol, 2013. 133(1): p. e4.
    [105] Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
    [106] Luis Gerardo Villa-Diaz., et al., Derivation and Long-Term Culture of ransgene-Free Human Induced Pluripotent Stem Cells on Synthetic Substrates. Stem Cells Translational Medicine, 2014;3:1410–1417
    [107] Kathryn A. Rosowski., et al., Edges of human embryonic stem cell colonies display distinct mechanical properties and differentiation potential. Scientific Reports | 5:14218 | DOI: 10.1038/srep14218
    [108] Shigeki Sugii., et al., Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. 3558–3563 | PNAS | February 23, 2010 | vol. 107 | no. 8
    [109] Kathryn C. Davidson., et al., Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. PNAS | March 20, 2012 | vol. 109 | no. 12 | 4485–4490
    [110] Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
    [111] Mihyun Lee., et al., Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomaterialia, 6 January 2016

    QR CODE
    :::