| 研究生: |
蕭筑云 Chu-Yun Hsiao |
|---|---|
| 論文名稱: |
利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究 A medium-entropy oxide as anode materials synthesized by spray granulation for lithium-ion battery applications |
| 指導教授: |
洪緯璿
Wei-Hsuan Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 高熵氧化物 、噴霧造粒法 、鋰離子電池 、負極材料 |
| 外文關鍵詞: | high entropy oxide, spay granulation, lithium-ion batteries, anode material |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將使用噴霧造粒法(spray granulation)進行中熵氧化物粉體之製備,並進一步作為鋰離子電池之負極材料進行研究。此製程技術常使用於合成陶瓷粉末,該技術具有粒徑均勻等優點,能有利於電極材料之應用。
本研究主要探討中熵氧化物用於鋰離子電池負極並透過熵穩定特性對電化學性能表現之影響,包含電池容量與循環穩定性等方面。在鋰離子電池實作成果方面,本研究開發之高熵氧化物負極材料,經鋰離子半電池之測試,在50mAh g-1之電流下,其庫倫效率達到了 98% 以上之穩定表現,進一步證實了熵穩定作用大幅提高了循環穩定性,證明高熵氧化物未來將具備替代現今鋰離子電池電極材料之潛力。
In this study, spray granulation will be used to prepare medium entropy oxide powder, and will be further studied as an anode material for lithium-ion batteries. Spray granulation is often used to synthesize powders. This fabrication process not only has the advantages of uniform particle size, but also suitable for the application of electrode materials. This study uses the medium entropy oxide powder prepared by the spray granulation method for the application of lithium-ion battery anode materials, and discuss the electrochemical performance of medium entropy oxides.
In terms of the results of the performance of lithium-ion batteries, the medium entropy oxide anode material developed in this research has been tested by a lithium-ion half-cell. In addition, it can be further confirmed that entropy stability greatly improves cycle stability, which proved that the high entropy oxide will have the potential to replace current lithium-ion battery electrode materials in the future.
1. Nitta, N., et al., Li-ion battery materials. present and future, MaterialsToday 18. 2015.
2. Naoki, N., et al., A new cathode material for batteries of high-energy density. 2015. 18: p. 252-264.
3. Breitung, B., et al., In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. 2016. 8(29): p. 14048-14056.
4. Reddy, M.A., et al., CFx derived carbon–FeF2 nanocomposites for reversible lithium storage. 2013. 3(3): p. 308-313.
5. Agostini, M., et al., High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. 2016. 8(17): p. 10850-10857.
6. Albedwawi, S.H., et al., High entropy oxides-exploring a paradigm of promising catalysts: a review. 2021. 202: p. 109534.
7. Rost, C.M., et al., Entropy-stabilized oxides. 2015. 6(1): p. 1-8.
8. Moździerz, M., et al., Mixed ionic-electronic transport in the high-entropy (Co, Cu, Mg, Ni, Zn) 1-xLixO oxides. 2021. 208: p. 116735.
9. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. 2016. 4(24): p. 9536-9541.
10. Hightech. 電池的原理與分類. 2021/5/22; Available from: https://www.stockfeel.com.tw/%E9%9B%BB%E6%B1%A0-%E6%A7%8B%E9%80%A0-%E5%8E%9F%E7%90%86-%E5%88%86%E9%A1%9E/.
11. 方程毅. 【材料科技】鋰電池樹枝狀結晶的難題. 2016/5/31; Available from: https://case.ntu.edu.tw/blog/?p=24589.
12. 平順建築材料. 鋰離子電池鋰枝晶生長:影響因素和抑制方法. 2020/10/12; Available from: https://read01.com/zh-tw/NNA4L4Q.html#.YVRAcppBxhF.
13. Xiaoting. 鋰電池鋰枝晶形成原因. 2019/11/07; Available from: http://news.chinatungsten.com/big5/tungsten-information/124927-ti-17785.
14. Eshetu, G.G., et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. 2013. 15(23): p. 9145-9155.
15. Abraham, K.J.T.j.o.p.c.l., Prospects and limits of energy storage in batteries. 2015. 6(5): p. 830-844.
16. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. 2004. 6(5): p. 299-303.
17. Ma, Y., et al., High-entropy energy materials: Challenges and new opportunities. 2021. 14(5): p. 2883-2905.
18. Gao, M.C., et al., High-entropy alloys. 2016.
19. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation. in Materials science forum. 2007. Trans Tech Publ.
20. Tsai, M.-H. and J.-W.J.M.R.L. Yeh, High-entropy alloys: a critical review. 2014. 2(3): p. 107-123.
21. Miracle, D.B. and O.N.J.A.M. Senkov, A critical review of high entropy alloys and related concepts. 2017. 122: p. 448-511.
22. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
23. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. 2018. 359(6383): p. 1489-1494.
24. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. 2019. 31(26): p. 1806236.
25. Sarkar, A., et al., Nanocrystalline multicomponent entropy stabilised transition metal oxides. 2017. 37(2): p. 747-754.
26. Sarkar, A., et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. 2017. 46(36): p. 12167-12176.
27. Sarkar, A., et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. 2018. 38(5): p. 2318-2327.
28. Lokcu, E., et al., Electrochemical performance of (MgCoNiZn) 1–x Li x O high-entropy oxides in lithium-ion batteries. 2020. 12(21): p. 23860-23866.
29. Sarkar, A., et al., High entropy oxides for reversible energy storage. 2018. 9(1): p. 1-9.
30. Liu, J., et al., Design and synthesis of chemically complex ceramics from the perspective of entropy. 2020. 8: p. 100114.
31. Messing, G.L., S.C. Zhang, and G.V.J.J.o.t.A.C.S. Jayanthi, Ceramic powder synthesis by spray pyrolysis. 1993. 76(11): p. 2707-2726.
32. Pluym, T., et al., Solid silver particle production by spray pyrolysis. 1993. 24(3): p. 383-392.
33. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. 1995. 10(7): p. 1661-1673.
34. Patil, P.S.J.M.C. and physics, Versatility of chemical spray pyrolysis technique. 1999. 59(3): p. 185-198.
35. Leng, J., et al., Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. 2019. 48(11): p. 3015-3072.
36. Chávarri, M., I. Marañón, and M.C. Villarán, Encapsulation technology to protect probiotic bacteria, in Probiotics. 2012, IntechOpen.
37. Innocenzi, P.J.J.o.S.-G.S. and Technology, Understanding sol–gel transition through a picture. A short tutorial. 2020. 94(3): p. 544-550.
38. Shirsath, S.E., et al., Ferrites obtained by sol-gel method, in Handbook of sol-gel science and technology. 2018, Springer Cham. p. 695-735.
39. Niu, B., et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. 2017. 7(1): p. 1-7.
40. Mao, A., et al., Solution combustion synthesis and magnetic property of rock-salt (Co0. 2Cu0. 2Mg0. 2Ni0. 2Zn0. 2) O high-entropy oxide nanocrystalline powder. 2019. 484: p. 245-252.
41. Sushil, J., et al., High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn) O by citrate gel method. 2021. 259: p. 124014.
42. Saghir, A.V., et al., One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation. 2021. 41(1): p. 563-579.
43. Bokov, D., et al., Nanomaterial by sol-gel method: synthesis and application. 2021. 2021.
44. 國立中興大學研究發展處. 貴重儀器中心:科技部基礎研究核心設施簡介. Available from: http://news.chinatungsten.com/big5/tungsten-information/124927-ti-17785.
45. 國立中央大學研究發展處. 貴重儀器中心:儀器服務. Available from: https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9.
46. 科技部基礎研究核心設施預約服務管理系統.國立中央大學貴重儀器使用中心. Available from: https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9.
47. Helen, M., et al., Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. 2015. 5(1): p. 1-12.
48. Poizot, P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. 2000. 407(6803): p. 496-499.
49. Ding, C., et al., A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. 2016. 18(37): p. 25879-25886.