| 研究生: |
何國鴻 Kuo-hung Ho |
|---|---|
| 論文名稱: |
金屬有機化學氣相沉積反應腔體承載盤熱流場之數值分析與實作驗證 Numerical analsis and experimental verification for thermal fluid field of susceptor in MOCVD reactor |
| 指導教授: | 利定東 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 熱流場分析、承載盤表面溫度場之均勻性、碳化矽鍍膜 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MOCVD為製造發光二極體(LED)中ㄧ個極為重要的製程,因其製程為高溫環境,因此在承載盤溫度場以及腔體流場分佈上有別於一般情況,而在磊晶的過程中,對於承載盤表面之溫度均勻性要求也極高,而熱場與流場所產生的效應是息息相關的,因其對於薄膜沉積均勻性與成長速率、晶格品質和材料使用率有極大的影響,故反應腔體內部的熱流場分析是必要的,因其可以決定一個LED元件的優劣,所以熱場分析在承載盤、磊晶區域、加熱器及反應腔體是非常重要的,並進一步對腔體流場相關參數像是質量流率和轉速分析其造成的影響,最後耦合熱場及流場在腔體內的分佈情形,探討承載盤表面溫度場之均勻性。
由於原本的石墨承載盤有使用週期過短的缺點,而使用碳化矽鍍膜之石墨承載盤,不僅能提高使用壽命,也有可能因此而改善承載盤整體的熱傳導率。基於上述原因,此異質材料之承載盤的熱場分析也是必要的。
最後將以上結果應用到自行建置之高溫驗證平台進行實作驗證,並搭配模擬結果相互比對,建立模擬與實作間高準確性的能力。
MOCVD is the main process for LED. Because of its high temperature environment, the temperature distribution on the surface of susceptor and the flow field of chamber are different with commercial case. The temperature distribution on the surface of susceptor requires high uniformity under Epitaxy process. And the effect of thermal and flow field generated is closely related due to it influences extremely the uniformity of the deposited process, growth rate of film, the lattice quality and the material utilization. Therefore, the analysis of thermal flow field inside the chamber is necessary. Because it can make a decision on the pros and cons of a LED device, and the analyses of the thermal field on the susceptor, the area of epitaxy, heater and the chamber of reactor are very important. In addition, we analyzes the effect of the various flow parameters such as mass flow rate and rotation rate in the chamber. Finally, we couple the distribution of thermal and flow field in the chamber to investigate the uniformity of temperature distribution on the surface of susceptor.
Because the graphite susceptor has a disadvantage such as short lifetime. However, with using silicon carbide coating, it not only rises the lifetime but also improves the total thermal conductivity. As the results of these reasons, the analysis of thermal flow field on the heterogeneoussilicon carbide coated surface is necessary.
Consequently, we built a high temperature verification chamber and use this chamber to verify the result of simulation on their high accuracy.
[1] 郭子菱, “MOCVD 設備發展現況與趨勢,” Industrial Economics & Knowledge Center,” pp. 1-7, 2012.
[2] G. Evans and R. Greif, “Effect of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, "Numerical Heat Transfer, Vol. 12, pp. 243-252, 1987.
[3] G. Evans and R. Greif, “A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor,"Transactions of the ASME, Journal of heat transfer, Vol. 109, pp. 928-935, 1987.
[4] I. Fotiadis, A. Mkremer, D. R. Mckenna and K. F. Jensen, “Complex flow phenomena in vertical MOCVD reactors : effect on deposition uniformity and interface abruptness.", Journal of Crystal. Growth, Vol.85, pp. 154-164, 1987.
[5] A. H. Dilawari and J. Szekely, “Computed results for the deposition rates and transport phenomena for an MOCVD system with a conical rotating substrate.", Journal of Crystal Growth, Vol.97, pp. 777-791, 1987.
[6] S. Patnaik and R. A. Brown, “Hydrodynamic dispersion in rotating-disk MOVPE reactors : Numerical simulation and experimental measurements.", Journal of Crystal Growth, Vol. 108, pp. 491-498, 1988.
[7] F. Durst and L. Kadinskii, “Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver. ", Journal of Crystal Growth, Vol. 125, pp. 612-626, 1991.
[8] G. W. Young, S. I. Hariharan, and R. Carnahan, “Flow effects in a vertical CVD Reactor,” SIAM Journal on Applied Mathematics, Vol. 52, pp. 1509-1532, 1992.
[9] W. Y. Chung, D. H. Kim, and Y. S. Cho, “Modeling of Cu Thin Film Growth by MOCVD Process in a Vertical Reactor," Journal of Crystal Growth, Vol. 180, pp. 691-697, 1997.
[10] S. Joh and G. H. Evans, “Heat Transfer and Flow Stability in a Rotating Disk/Stagnation Flow Chemical Vapor Deposition Reactor,” Numerical Heat Transfer, Part A: Applications, Vol. 31, pp. 867-879, 1997.
[11] D. W. Weyburne and B. S. Ahem, “Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor,"Journal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[12] T. G. Mihopoulos, “Simulation of flow and growth phenomena in a close-spaced reactor"Journal of Crystal Growth, Vol. 195, pp. 725-732, 2000.
[13] A. G. Mathews and J. E. Peterson, “Flow Visualizations And Transient Temperature Measurements In An Axisymmetric Impinging Jet Rapid Thermal Chemical Vapor Deposition Reactor,"Journal of Heat Transfer, Vol. 124, pp. 564-570, 2002.
[14] C. Park, J. Y. Hwang, M. Huang and T. J. Anderson, “Investigation Of An Up Flow Cold-Wall CVD Reactor By Gas Phase Raman Spectroscopy,"Thin Solid Films, Vol. 409, pp. 88-97, 2002.
[15] H. V. Santen, C. R. Kleijn, E. A. Harry and V. D. Akker, “On Turbulent Flow In Cold-Wall CVD Reactor,” Journal of Crystal Growth, Vol. 212, pp. 299-310, 2000.
[16] G. Luo, S. P. Vanka and N. Glumac, “Fluid Flow And Transport Processes In A Large Area Atmospheric Pressure Stagnation Flow CVD Reactor For Deposition Of Thin Films,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4979-4994, 2004.
[17] B. Mitrovic, A. Gurary and L. Kadinski, “On the flow stability in vertical rotating disc MOCVD reactors under awide range of process parameters,” Journal of Crystal Growth, Vol. 287, pp. 656–663, 2005.
[18] B. Mitrovic, A. Parekhand J. Ramer, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,” Journal of Crystal Growth, Vol. 289, pp. 708-714, 2006.
[19] B. Mitrovic, A. Guraryand W. Quinn, “Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,” Journal of Crystal, Vol. 303, pp. 323-329, 2007.
[20] Z. S. Quan, “Numerical studies on flow and thermal fields in MOCVD reactor,” Chinese Science Bulletin, Vol. 55, pp. 560-566, 2009.
[21] C. H. Lin and W. T. Cheng, “Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling,” International Communications in Heat and Mass Transfer, Vol. 36, pp. 680-685, 2009.
[22] Z.M. Li and Y. Hao, “Thermal transporation simulation of a susceptor structure with ring groove for the vertical MOCVD reactor,” Journal of Crystal Growth, vol. 266, pp. 4679-4684, 2009.
[23] X.F. Wu and S.G. Hu, “A kind of Coating Method of GaN-MOCVD Graphite Susceptor,” Journal of Nanomaterials, Vol. 2013, Article ID 137564, 6pages, 2013.
[24] Z. Li, “A susceptor heating structure in MOVPE reactor by induction heating,” Appl. Therm. Eng., Vol.67, 2014, pp. 423-428.
[25] Z. Li, “A susceptor with partial-torus groove in vertical MOCVD reactor by induction heating,” Int. J. Heat Mass Transfer, Vol. 75, 2014, pp. 410-413.
[26] C. S. Kim, J. Hong, J. Shin and B. J. Kim, “Numerical and Experimental Study on Metal Organic Vapor-phase Epitaxy of InGaN/GaN Multi-Quantum-Wells,” Journal of Fluid Engineering, Vol. 130, No. 05, 2008.
[27] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice Organometallic Vapor-Phase Epitaxy: New York: Academic Press, 1999.
[28] 詹少彬, “MOCVD加熱系統研究,” 華中科技大學, 2008.
[29] M. Dauelsberg, C. Martin, and H. Protzmann, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors,” Journal of Crystal Growth, Vol. 298, pp. 418-424, 2007.
[30] D. G. Zhao, J. J. Zhu and D. S. Jiang, “Parasitic reaction and its effect on the growth rate of AlN by metal organic chemical vapor deposition,” Journal of Crystal Growth, Vol. 289, pp. 72-75, 2006.
[31] H. W. Jackson, J. L. Watkinsand S. Chung et al. "Conductive sphere in a radio frequency field: Theory and applications topositioners, heating, and noncontact measurements,” J. Appl. Phys., vol. 79(7), pp. 3370-3384, 1996.
[32] T. Murakami, Y. Okuno, and H. Yamasaki., “Performance of rf-assisted magnetohydrodynamics power generator,” Physics of Plasmas, vol. 12, Article ID113503, pp. 1-8, 2005.
[33] A.G. Thompson, “MOCVD technology for semiconductors”, Journal ofMaterials letters, Vol. 30, pp 255-263, 1996.
[34] 陸大成, 樹坤, 金屬有機化合物氣相外延基礎與應用, 一版, 科學出版
社, 北京, 2009年.
[35] M. Dauelsberg, E.J. Thrush, B. Schineller and J. Kaeppeler, “Technology of OVPE Production Tools”, Elsevier Ltd, 2004.
[36] Y. C. Chung and C. T. Chen, “Mathematical modeling and optimal of an MOCVD reactor for GaAs film growth”, Journal of the Taiwan Institute of Chemical Engineers, No. of Pages 14, 2013.
[37] L. M. Kaufmann, F. Heukenand M. R. Tilders et al. “Safety aspects of
MOVPE in research and development: a example”, Journal Crystal
Growth, Vol. 93, pp. 279-284, 1988.
[38] J. M. Colabella, R. A. Stalland C. T. Sorenson, “The absorption and
subsequent oxidation of AsH3 and PH3 on activated carbon”, Journal
Crystal Growth, Vol. 92, pp. 189-195, 1988.
[39] 莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[40] J. P. Holman 著,熱傳遞學,第十版,高立圖書有限公司,2011