跳到主要內容

簡易檢索 / 詳目顯示

研究生: 涂閔忠
Min-Zhong Tu
論文名稱: 圓錐平板型生物反應器脈動式流場研究
Pulsatile Flow In A Cone-And-Plate Bioreactor
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 脈動式主流場剪應力圓錐平板型生物反應器
外文關鍵詞: pulsatile, cone-and-plate bioreactor, primary flow, shear stress
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    生物反應器(bioreactor)為一種體外裝置,它可以提供適當的生化和機械刺激(如流體剪應力、拉伸、彎曲和壓縮等)的環境以促進細胞的生長及組織的變異。
    本篇論文主要是在研究錐板型生物反應器內,流場剪應力的分佈情形。之前學者對於錐板型裝置的研究,均是考量圓錐是作單一方向性的旋轉。然而在真實的情況下,由於心臟的收縮與舒張會使得血液的流動為脈動(pulsatile)的形式,因此我們設定流場的流動為脈動式的。並且考慮此裝置具有邊界,研究邊界效應以及圓錐轉動頻率對於流場剪應力的影響。


    Abstract
    Bioreactor is an in-vitro apparatus that can impart appropriate biochemical and mechanical environments to promote cell growth and tissue differentiation. Among the mechanical stimulation apparatus for the cell and tissue cultures, the cone-and-plate system has been applied to provide shear stresses for such as the endothelial and cartilage responses studies. Most of the previous studies considered the cone rotated steadily to generate steady-state shear stimulus. In this paper we consider the flow field is pulsatile. Contemplating two parameters which regard the shear stress, one is the side wall effects and the other is related to the frequency of the cone, we set up the formulation for the shear stress in the cone-and- plate system.

    目 錄 目錄 I 圖目錄 III 符號說明 V 第一章 前言 1 1.1研究背景 1 1.2文獻回顧 1 1.3研究動機 3 第二章 數學模式 4 2.1物理系統 4 2.2統御方程式的建立 4 2.3無因次化統御方程式的建立 5 第三章 數值解方法 8 3.1速度的計算 8 3.1.1定常解 8 3.1.2非定常解 9 3.2剪應力的計算 11 3.3扭矩的計算 13 第四章 解析解方法 15 4.1內部解 15 4.1.1定常解 15 4.1.2非定常解 16 4.2外部解 18 4.2.1定常解 18 4.2.2非定常解 22 4.3均一解 25 第五章 結果分析 27 5.1速度的分析 27 5.2剪應力的分析 28 5.3扭矩的分析 29 第六章 結論 30 參考文獻 32

    參考文獻
    1. Berger, S. A. , Goldsmith, W. and Lewis, E. R. ,“Introduction to bioengineering,”Oxford(1996).
    2. Brown, T. D. ,“Techniques for mechanical stimulation of cells in vitro:a review,”J. Biomech. 33, 3-14(2000).
    3. Bussolari, S. R. ,Dewey, C. F. and Gimbrone, M. A. ,“Apparatus for subjecting living cells to fluid shear stress,”Rev. Sci. Instrum. 53,1851-1854(1982).
    4. Chiu, J. J. , Chen, L. J. , Chen, C. N. , Lee, P. L. and Lee, C. I“A model for studying the effect of shear stress on interaction between vascular endothelial cells and smooth muscle cells,”J. Biomech. 37, 531-539(2004).
    5. Cox, D. B.“Radial flow in the cone-plate viscometer,”Nature 193, 670(1962).
    6. Dewey, C. F. , Bussolari, S. R. , Gimbrone, M. A. and Davies, P. F.“The dynamic respone of vascular endothelial cells to fluid shear stress,”J. Biomech. Eng. 103, 177-185(1981).
    7. Dewey, C. F.“Effects of fluid flow on living vascular cells,”J. Biomech. Eng. 106, 31-35(1984).
    8. Einav, S. , Dewey, C. F. and Hartenbaum, H.“Cone-and-plate apparatus:a compact system for studying well-characterized turbulent flow fields,”Experiments in Fluids 16, 196-202(1994).
    9. Hochleitner, B. W. , Hochleitner, E. O. , Obrist, P. , Eberl, T. , Amberger, A. , Xu, Q. , Margreiter, R. and Wick, G.“Fluid shear stress induced heat shock protein 60 expression in endothelial cells in vitro and in vivo,”Arterioscler Thromb Vasc. Biol. 20, 617(2000).
    10. Koslow, A. R. , Stromberg, R. R. , Friedman, L. I. , Lutz, R. J. , Hilbert, S. L. and Schuster, P.“A flow sysKtem for the study of shear forces upon cultured endothelial cells,”Transactions of the ASME 108, 338-341(1986).
    11. Malek, M. and Izumo, S.“Control of endothelial cell gene expression by flow,”J. Biomech. 28, 1515-1528(1995).
    12. Sdougos, H. P. , Bussolari, S. R. and Dewey, C. F.“Secondary flow and turbulence in a cone-and-plate device,”J. Fluid Mech. 138, 379-404(1984).
    13. Viggers, R. F. , Wechezak, A. R. and Sauvage, L. R.“An apparatus to study the response of cultured endothelium to shear stress,”Transactions of the ASME 108, 332-337(1986).
    14. White, F. M.“Viscous fluid flow,”second edition, McGraw-Hill(1991).

    QR CODE
    :::