跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝亞侖
Ya-Lun Hsieh
論文名稱: 球面網格的構建及半導體元件的模擬
Construction of Hemispherical Mesh and Simulation of Semiconductor Devices
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 58
中文關鍵詞: 模擬半導體二極體球殼
外文關鍵詞: simulation, semiconductor, diode, spherical shell
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是建構球面網格的架構,將其進行半導體元件的電性模擬,運用 C語言來撰寫程式,模型的單位是以四面體為基礎,先使用四面體建構傳統的六面體元件,再建構出球殼模型,因四面體是在三維模型中最小的單位,在組成其它形狀時的靈活度會最高,理論的部分則是使用有限元素法、重心法、來建構出四面體,在使用帕松方程式(Poisson’s Equation)、電子連續方程式(Electron continuity equation)電洞連續方程式(Hole continuity equation)來模擬半導體元件的擴散、飄移、產生、複合等特性,在運算架構部分,我們是使用牛頓拉福森法來來進行運算,開發出一套可以模擬半導體元件特性的模型架構。結果的部分,我們分別模擬了六面體所組成的串聯電阻與二極體,也模擬了使用四面體所組成球體電阻與球殼二極體,結果也符合我們的預期,可以確定我們的模擬是可行的。


    This thesis is mainly about the electrical simulation of semiconductor components by using C language program of spherical mesh structure. The unit of the model is based on tetrahedron. First, we use tetrahedron to construct basic hexahedral components, and then the model of the spherical shell, since the tetrahedron is the smallest unit in the three-dimensional model, it has the highest flexibility when
    composing other models. The theoretical part uses the finite element method and the center of gravity method to construct the tetrahedron. We use Poisson’s Equation, Electron
    continuity equation, and Hole continuity equation to simulate the diffusion, drift, generation, recombination, and other characteristics of semiconductor components. In the computing architecture part, we use Newton-Raphson's method to perform calculations, and developed a model architecture that can simulate the characteristics of semiconductor components. In the results part, we simulated the series resistance、diode、MOS capacitance composed of hexahedrons, spherical resistance and the spherical shell diode composed of tetrahedra. The results are also in line with our expectations, and we can confirm that our simulation is feasible.

    摘要i Abstractii 誌謝iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 簡介 1 第二章 三維四面體的架構與模擬3 2.1 程式的計算原理 3 2.2 四面體等效電路模型建構 7 2.3 四面體等效電路推導 11 2.4 四面體內部電場與電位關係 17 2.5 三維六面體元件建構與模擬結果18 第三章 三維球體元件的建構與模擬 23 3.1 球面網格建構方法 23 3.2 球面網格建構方法改良版 27 3.3 球體網格之電阻模擬 30 第四章 三維球殼元件的建構與模擬 33 4.1 球殼網格的建構方法 33 4.2 球殼網格的體積比 37 4.3 球殼元件的二極體模擬 38 第五章 結論 41 參考文獻 42

    [1] Alexander, C.K. and Sadiku. Fundamentals of Electric Circuits 4/E. M.C.H.2009.
    [2] P. Feldmann and R.A. Rohrer, “Proof of the Number of independent Kirchhoff
    Equations in an Electrical Circuit”, IEEE Transactions on Circuits and Systems,
    vol. 38, No. 7, pp.681 - 684, IEEE, Jul. 1991.
    [3] Atkinson, Kendall E./ Han, Weimin. Elementary Numerical Analysis. Wiley.2003.
    [4] R. A. Jabr, M. Hamad, Y. M. Mohanna, “Newton-Raphson Solution of Poisson’s
    Equation in a PN Diode,” Int. J. Electrical Eng. Educ., Jan. 2007.
    [5] M. Putti and C. Cordes, “Finite Element Approximation of the Diffusion Operator
    on Tetrahedra”, SIAM J. SCI. COMPUT., Vol. 19, No. 4, pp. 1154– 1168, Society
    for Industrial and Applied Mathematics, July 1998.
    [6] Simon M. Sze and Ming-Kwei Lee. Semiconductor Devices: Physics and
    Technology (3rd Edition). Wiley.2012.
    [7] R.E. Bank, D.J.Rose, W.Fichtner, “Numerical methods for semiconductor
    device,”IEEE Trans, Electron Devices, vol.30, on.9, Sep.1983.
    [8] S. Micheletti, “Stabilized finite elements for semiconductor device simulation,”
    Compute & Visual Sci., vol. 3, pp. 177-183, 2001.
    43
    [9] T. D. Pauw and W. F. Pfeffer, “The Divergence Theorem for Unbounded Vector
    Fields”, Transactions of the American Mathematical Society, Vol. 359, No. 12, pp.
    5915 - 5929, American Mathematical Society, Dec. 2007.
    [10] M. Marrero-Martín and J. García, B. González and A. Hernández, "Circuit models
    for PN integrated varactors," IEEE Trans, Palma de Mallorca, pp. 1-4, 2011.
    [11] Xizhen Zhang, Chuanhui Cheng, Huichao Zhu, Tao Yu, Daming Zhang, and
    Baojiu Chen, “A New MOS Capacitance Correction Method Based on FiveElement Model by Combining Double-Frequency C−V and I–V Measurements ”,
    IEEE Electron Device Letters, vol. 37, no. 10, Oct. 2016.
    [12] William H. Hayt and John A. Buck. Engineering Electromagnetics 9/e.新月. 2019.
    [13] Y.P.Chen, “3D grounded Cube Element and Matrix Coefficient Verification and
    its Applications to Semiconductor Device Simulation” National Central
    University, M.S.Thesis, June.2021.
    [14] Y.T.Liao, “3D Bridged Cube Element and Matrix Coefficient Verification and Its
    Applications to Semiconductor Device Simulation” National Central University,
    M.S.Thesis, June.2021.
    [15] Y. C. Lai, “1D Matrix Coefficient Verification And Semiconductor Device
    Simulation”, Nation Central University, M. S. Thesis, Jun. 2020.

    QR CODE
    :::