| 研究生: |
張湧翔 Yung-hsiang Chang |
|---|---|
| 論文名稱: |
可撐式椎籠於骨融合手術初期之生物力學影響 |
| 指導教授: | 黃俊仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 骨融合手術 、椎籠 、有限元素法 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著醫療技術的進步,人口老化已是世界的趨勢。隨著年紀的攀升人體老化的情況與意外事故的發生也隨之增加。其中尤以腰椎椎間盤的退化最為常見。醫療手術中治療腰椎椎間盤退化通常是使用脊椎融合術,融合術是擺入椎籠替代原本退化的椎間盤
並植入骨粉將上下兩塊椎骨融合成一塊椎骨。本篇研究是新設計一種可撐開式的椎籠取代傳統椎籠探討其生物力學行為,觀察是否能比傳統椎籠更有其優勢。
本篇研究使用AMIRA與SolidWorks建立L3-L5腰椎模型,並移除L4/L5椎間盤置入不同形式之椎籠(可撐式椎籠、一般圓椎籠、一般方椎籠),再以ANSYS Workbench進行有限元素分析,探討其融合初期之生物力學行為。
結果顯示可撐式椎籠之運動範圍(ROM)值在後仰、前彎、左彎及右彎表現上都比同外型尺寸的圓椎籠好;在後仰、前彎與右彎的表現比方椎籠好。可撐式椎籠抵抗扭轉能力較差,ROM較大。可撐式椎籠最大應力值高於圓椎籠與方椎籠,可考慮在應力集中處的凹槽底部增大曲率半徑,以降低應力。可撐式椎籠造成的鄰近椎間盤應力值提升不明顯,較不會導致鄰近椎間盤退化。
In resent years, the aging population becomes the trend in the world. With the age rising, the effect of aging and the accidents are increasing. The most common degeneration is in the lumbar intervertebral disc. Lumbar interbody fusion is usually used in the treatment of the degeneration. The fusion uses the cage to replace the degenerated disc and insert some bone graft to let the inferior/exterior intevertebarl body fuse together. The present study develops a new expandable cage to substitute for the traditional cage, and finds the differences of biomechanical behaviors between the expandable cage and traditional cage.
The software AMIRA and SolidWorks were adopted to establish the lumbar model. The L4/L5 intervertebral disc was replaced by different cages such as expandable cage, circular cage, and square cage. The biomechanical behaviors of the lumbar in the initial stage of fusion were analyzed with finite element method.
From the results, the range of motion (ROM) of pillar-spine is better than that of circular- spine in the case of extension, flexion, left-bending, and right-bending. Also, the ROM of pillar-spine is better than s that of Square-spine in the case of extension, flexion, and, right- bending. But the ROM of pillar-spine is higher in the case of left-rotation and right-rotation. The max. von Mises stress in pillar-spine is higher than the others. This study suggests that increasing the radius of the fillet to decrease the stress concentration. The degeneration of adjacent intervertebral disc is not obvious in this study.
[1] 蘇崇瑋,「微創椎弓根螺釘補強之最佳化分析」,國立中央大學,碩士論文,民國101年7月。
[2] 洪志毅,「不同的脊椎植入物對腰椎椎體與小面關節的影響」,碩士論文,國立陽明大學,民國95年8月。
[3] 鄭筱瑾,「植入擴張型椎間融合器之鄰近椎體應力分析」,國立陽明大學,碩士論文,民國98年8月。
[4] Fourney DR, Schomer DF, Nader R, et al. Percutaneous Vertebroplasty and Kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003; 98:21-30.
[5] 鮑卓倫:常見脊椎疾病,2013。http://ispinecare.com/index.html
[6] Tang S, Rebholz BJ. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study, J Orthop Sci 2011;16:221-228.
[7] Rohlmann A, Zander T, Bergmann G. Spinal loads after osteoporotic vertebral fractures treated by Vertebroplasty or Kyphoplasty. Eur Spine J 2006;15: 1255-64.
[8] Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion. Spine 2003; 28: 526-35.
[9] Zdeblick TA, David SM. A prospective comparison of surgical approach for anterior L4–L5 fusion. Spine 2000; 25: 2682-87.
[10] Spine-Health, 2013, http://www.spine-health.com
[11] Cole CD, McCall TD, Schmidt MH, Dailey AT. Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Musculoskeletal Medicine 2009; 2:118-26.
[12] Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation. J Neurosurg Spine 2005; 3: 218-23.
[13] Kim JS, Lee KY, Lee SH, Lee HY. Which lumbar interbody fusion technique is better in terms of level for the treatment of unstable isthmic spondylolisthesis. J Neurosurg Spine 2010; 12:171-77.
[14] Min JH, Jang JS, Lee SH. Comparison of anterior- and posterior-approach instrumented lumbar interbody fusion for spondylolisthesis. J Neurosurg Spine 2007; 7:21-26.
[15] Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB, Covington LA. Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 2001; 26:567-71.
[16] Rahm MD, Hall BB. Adjacent-segment degeneration after lumbar fusion with instrumentation: A retrospective study. Journal of Spinal Disorders 1996; 9:392-400.
[17] Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988;13:375-7.
[18] Stoffel M, Behr M, Reinke A, Stuer C, Ringel F, Meyer B. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic®-system: a prospective observation. Acta Neurochir 2010;152:835-43.
[19] Schmoelz W, Huber J F, Nydegger T, Claes L, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments an in Vitro experiment. Journal of Spinal Disorders & Techniques 2003;16:418-23.
[20] Pienkowski D et al. Multicycle mechanical performance of titinium and stainless steel transpedicular spine implants. Spine 1998; 23:782-8.
[21] Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, Chiou TL, Chang YL, Su CF, Lin SZ, Chen SY. Efficacy of anterior cervical fusion: Comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. Journal of Clinical Neuroscience 2008;15:1240-5.
[22] Invibio, 2013, http://www.invibio.com
[23] MedicalEXPO, 2013, http://www.medicalexpo.com/
[24] Zhang H, Li W, Li F, Chen Q, Xu K, Chen W. New expanded cage designed for lumbar disc herniation : finite element analysis. Applied Mechanics and Materials 2012;140: 78-83.
[25] Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP. Interbody cage stabilisation in the lumbar spine: Biomechanical evalution of cage design, Posterior instrumentation and bone density. J Bone Joint Surg1998; 80:351-9.
[26] 陳信豪,「二維CT醫學影像之骨頭輪廓自動擷取」,國立中央大學,碩士論文,民國97年6月。
[27] 許誌文,「腿骨二維輪廓點資料之三維網格模型重建」,國立中央大學,碩士論文,民國97年6月。
[28] Kim Y. Finite element analysis of anterior lumbar interbody fusion. Spine 2007; 32: 2558-68.
[29] Tsuang YH, Chiang YF, Hung CY, Hung WW , Huang CH, Cheng CK. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-A finite element study. Medical Engineering & Physics 2009; 31: 565-70.
[30] Goto K, Tajima N, Chosa E, Totoribe K, Kubo S, Kuroki H, Arai T. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). Journal of Orthopaedic Science 2003; 8: 577-5.
[31] Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A Finite Element Study. Spine 2006; 31: E992-8.
[32] Lee KK, Teo EC, Fuss FK, Vanneuville V, Qiu TX, Ng HW, Yang K, Sabitzer RJ. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Transactions on Biomechanical Engineering 2004; 51:393-400.
[33] Polikeit A, Ferguson SJ, Nolte LP, Orr T E. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 2003; 12: 413-20.
[34] Liu CL, Zhong ZC, Shih SL, Hung CH, Lee YE, Chen CS. Influence of Dynesys system screw profile on adjacent segment and screw. J Spinal Disord Tech 2010; 23: 410-7.
[35] Fan CY, Hsu CC, Chao CK, Lin SC, Chao KH. Biomechanical comparisons of different posterior instrumentation constructs after two-level ALIF:A Finite Element Study. Medical Engineering & Physics 2010; 32: 203-11.
[36] Chiang MF, Zhong ZC, Chen CS, Cheng CK, Shih SL. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine 2006; 31: E682-9.
[37] Pintar FA, Yoganandann N, Myers T, Elhagediab A, Sances A. Biomechanical properties of human lumbar spine ligaments. J. Biomechanics 1992; 25: 1351-56.
[38] Goel VK, Kim YE, LIM TH ,Weinstein JN. An analytical investigation of the mechanics of spinal instrumentation. Spine 1988; 13: 1003-11.
[39] Chao CK, Hsu CC, Wang JL, Lin J. Increasing bending strength and pullout strength in conical pedicle screw: biomechanical tests and finite element analyses. Journal of Spinal Disorders & Techniques 2008; 21: 130-8.
[40] 鍾政成,「腰椎椎間融合器之設計與生物力學評估」,國立陽明大學,碩士論文,民國93年6月。
[41] Livestrong.com, 2013, http://www.livestrong.com/
[42] Galbusera F, Schmidt H, Wilke HJ. Lumbar interbody fusion: a parametric investigation of a novel cage design with and without posterior instrumentation. Eur Spine J 2012; 21:455-62.
[43] Kiapour A, Kiapour MA, Kodigudla M, Hill GM, Mishra S, Goel VK. A Biomechanical FE study of subsidence and migration tendencies in Stand-Alone fusion procedures-comparison of an in Situ expandable device with a rigid device. Journal of Spine 2012; 1:1-5.
[44] ASM Areospace Specification Metals,2013, http://www.aerospacemetals.com/index.html