跳到主要內容

簡易檢索 / 詳目顯示

研究生: 侯宗毅
Tsung-Yi Hou
論文名稱: 應用四步相移解碼多階相位之消除碟片位移雜訊之研究
Study on elimination of phase-error induced by disc misalignment with four-step phase shift interferometry for multiple phase decoding
指導教授: 孫慶成
Ching-Cherng Sun
楊宗勳
Tsung-Hsun Yang
余業緯
Yeh-Wei Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 146
中文關鍵詞: 全像儲存雙頻光柵誤碼率
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於一個簡單的體積全像儲存相位解碼方法,並且能夠精確地讀取出資訊是必要的。此邊我們提出一個模組叫做雙頻光柵剪切干涉儀(Doubl-frequency grating based shearing interferometry簡稱DFGSI)。此模組是利用全像片,上記錄了兩種不同空間頻率的光柵,稱為雙頻光柵(Double-frequency grating,簡稱 DFG)。並配合四步相移技術來做全像儲存的四階相位訊號解碼,模擬得證用此模組可以消除碟片震動所造成的相位錯誤雜訊影響,進而讀出準確的資訊,達到誤碼率小於1%。實驗部分可以應證輸入一個完美訊號,此模組的剪切位移量可以達到符合預期的效果且能有效地消除雜訊得到較好的誤碼率。


    A simple method to decode the stored phase signal of volume holographic data storage precisely is highly demanded. We promote a module called double-frequency-grating based shearing interferometry (DFGSI). Double-frequency grating is the Holographic film which is recorded by two different space frequency grating . We combine with the phase shift interferometry to decode the signal modulated by four step phase only. The simulation prove this module can remove the noise caused by shifting the disc laterally. Then, it can decode the signal correctly, and the bit error rate is less than 1%. The experiment prove that we input the perfect signal to this module. Then the displacement of shearing interferometer can achieve the effect we expected. In addition, it can remove the noise efficiently to have the better bit error rate.

    目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xix 第一章 緒論 1 1-1 全像系統與儲存技術發展 1 1-2 研究動機 4 1-3論文大綱 6 第二章 原理介紹 8 2-1 全像術理論與介紹 8 2-2 同差檢測法的介紹 11 2-2-1 四步相移數位全像術 13 2-2-2 正交同差檢測法 15 2-3 橫向剪切干涉術的種類及介紹 18 2-3-1基於雷射的橫向剪切干涉架構 18 2-3-2環狀干涉儀之橫向剪切干涉術 19 2-3-3 Jamin interferometer之橫向剪切干涉術 20 2-3-4邁克森干涉儀之橫向剪切干涉術 22 2-3-5繞射原理之橫向剪切干涉術 23 2-4空間光學調製器的工作原理 25 2-4-1 液晶的工作原理 26 2-4-2 瓊斯矩陣 27 2-4-3 液晶的電光效應 29 2-4-4 振幅式調制 31 2-4-5 相位式調制 33 第三章 雙頻光柵剪切干涉儀模組(DFGSI) 40 3-1 雙頻光柵之橫向剪切干涉術原理 40 3-2 雙頻光柵之製作方法及原理 45 3-2-1 SLM調制的Blaze grating 46 3-2-2 改良雙頻光柵的製作架構 49 3-2-3 全像片固化 53 3-3 雙頻光柵剪切干涉結果 56 第四章 利用DFGSI系統配合四步相移解碼並解決碟片位移造成的相位雜訊 ………………………………………………………………….63 4-1 以空間光調制器輸入隨機四階相位編碼訊號 63 4-2 誤碼率 65 4-3 模擬全像儲存在碟片位移 0 μm的記錄以及讀取 71 4-3-1 用平面波做四步相移解碼以及誤碼率分析 74 4-3-2 用DFGSI做四步相移解碼以及誤碼率分析 77 4-3-3 解碼原始訊號的絕對相位 79 4-4 模擬全像儲存在碟片位移 1 μm的記錄以及讀取 80 4-4-1 用平面波做四步相移解碼以及誤碼率分析 82 4-4-2 用DFGSI做四步相移解碼以及誤碼率分析 84 4-4-3 解碼原始訊號的絕對相位 86 4-5 相對相位與絕對相位的解碼比較 87 4-6 DFGSI實驗檢測 104 第五章 結論 112 參考文獻 113 中英文對照表 118

    1. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
    2. R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18, 1091-1098 (2010).
    3. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38, 748-750 (2013).
    4. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42, 1377-1380 (2017).
    5. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    6. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    7. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14, 3187– 3192 (2006).
    8. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161–2164 (2015).
    9. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39, 6891-6894 (2014).
    10. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
    11. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
    12. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
    13. H. Coufal, D. Psaltis and G. T. Sincerbox, Eds, Holographic data storage, (Berlin, Germany, Springer-Verlag, 2000).
    14. L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Lab. Record 45, 319-326 (1968).
    15. W. H. Strehlow, R. L. Dennison and J. R. Packard, “Holographic data store,” J. Opt. Soc. Am 64, 543-544 (1974).
    16. J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
    17. N. Nishida, M. Sakaguchi and F. Saito, “Holographic coding plate: a new application of holographic memory,” Appl. Opt. 12,1663-1674 (1973).
    18. L. D. Auria, J. P. Huignard, C. Slezak, and E. Spitz, “Experimental holographic read-write memory using 3-D storage,” Appl. Opt. 13, 808-818 (1974).
    19. Y. Tsunoda, K. Tatsuno, K. Kataoka, and Y. Takeda, “Holographic video disk: an alternative approach to optical videodisks,” Appl. Opt. 15, 1398-1403 (1976).
    20. K. Kubota, Y. Ono, M. Kondo, S. Sugama, N. Nishida, and M. Sakaguchi, “Holographic disk with high data transfer rate: its application to an audio response memory,” Appl. Opt. 19, 944-951(1980).
    21. I. McMichael, W. Christian, D. Pletcher, T. Y. Chang, and J. H. Hong, “Compact holographic storage demonstrator with rapid access,” Appl. Opt. 35, 2375-2379 (1996).
    22. M. P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, and G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360-2374 (1996).
    23. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641 (1997).
    24. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737 (1997).
    25. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    26. G. W. Burr, F. H. Mok, and D. Psalts, “Angle and space multiplexed storage using the 90∘geometry,” Opt. Commun. 117, 49-55 (1995).
    27. W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
    28. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992)
    29. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F. T. S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tnable diode-laser,” Opt. Commun. 101, 317-321 (1993).
    30. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991)
    31. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    32. C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000)
    33. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966).
    34. A. Pu and D. Psaltis, in 1997 Optical Data Storage Topical Meeting (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 48–49.
    35. K. Curtis, “Holographic Data Storage,” presented at Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, 26 October, 2005.
    36. H. Horimai, “Collinear holography,” Proc. 5th Pacific Rim Conference on Lasers and Electro-Optics 1, 376–377 (2003).
    37. K. Tanaka, H. Mori, M. Hara, K. Hirooka, A. Fukumoto, and K. Watanabe, “High density recording of 270 Gbits/inch2 in a coaxial holographic storage system,” Tech. Digest of ISOM 2007, MO–D–03.
    38. H. Horimai, and X. Tan, “Advanced collinear holography,” Opt. Rev. 12, 90–92 (2005).
    39. H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575– 2579 (2005).
    40. H. Horimai, and X. Tan, “Holographic versatile disc system,” Proc. of SPIE 5939, 593901 (2005).
    41. Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Opt. Express 24, 10412-10423 (2016).
    42. 楊繼賢,使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立,國立中央大學光電科學研究所碩士論文,中華民國一百零六年。
    43. J. Liu, H. Horimai, X. Lin, Y. Huang, and X. Tan, “Phase modulated high density collinear holographic data storage system with phase retrieval reference beam locking and orthogonal reference encoding,” Opt. Express 26, 3828-3838 (2018).
    44. J. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
    45. W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1966).
    46. H. R. Carleton and W. T. Maloney, “A balanced optical heterodyne detector,” Appl. Opt. 7, 1241 (1968).
    47. J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11, 1619 (1972).
    48. Y. Fujii, J. I. Yamashita, S. Shikata, and S. Saito, “Incoherent optical heterodyne detection and its application to air pollution detection,” Appl. Opt. 17, 3444 (1978).
    49. H. P. Yuen and V. W. S. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177 (1983).
    50. R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fibre-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18, 445 (1986).
    51. T. Okoshi, “Recent advances in coherent optical fiber communications systems,” J. Lightwave Commun. 5, 44 (1987).
    52. M. J. Collett, R. Loudon and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34, 881 (1987).
    53. K. Curtis, L. Dhar, A. Hill, W. Wilson and M. Ayres, Holographic Data Storage: From Theory to Practical Systems, (WILEY, 2009).
    54. H. Mikami, T. Shimano, H. Kudo, J. Hashizume and H. Miyamoto, “Read-out signal amplification by homodyne detection scheme,” Joint International Symposium on Optical Memories and Optical Data Storage, presented at Waikoloa Hawaii, July 2008, paper TuA01.
    55. S. Aoki, M. Yamada and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Joint International Symposium on Optical Memories and Optical Data Storage, presented at Waikoloa Hawaii, July 2008, paper TuB02.
    56. A. M. van der Lee and E. Altewischer, “Drive considerations for multi-layer discs,” presented at International Symposium on Optical Memories Takamatsu, Japan, October 2006, paper Mo-C-05.
    57. K. Tanaka, M. Hara, K. Tokuyama, K. Takasaki, H. Okada, Y. Okamoto, H. Mori, A. Fukumoto and K. Okada, “Experimental verification of coherent addition technique for coaxial holographic data storage,” presented at Optical Data Storage Conference, Florida 2009.
    58. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    59. Mark R. Ayres, and Boulder, “Method for holographic data retrieval by quadrature homodyne detection,” United States Patent, US 8,233,205 B2 (2012).
    60. D. Nyssonen and J. M. Jerke, “Lens Testing with a Simple Wavefront Shearing Interferometer,” Appl. Opt. 12, 2061–2082 (1973).
    61. M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source,” Appl. Opt. 3, 531–534 (1964a)
    62. P. Hariharan and D. Sen, “Cylic Shearing Interferometer,” J. Sci. Instrum. 37, 374 (1960).
    63. D. Malacara, Optical Shop Testing, 3rd eds. (A Wiley-Interscience, 2007)
    64. D. Kelsall, “Optical frequency response characteristics in the presence of spherical aberration measured by an automatically recording interferometric instrument,” Proc. Phys. Soc 73, 465 (1959).
    65. J. C. Wyant, “Double Frequency Grating Lateral Shear Interferometer,” Appl. Opt. 12, 2057 (1973).
    66. Y. Amnon and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, (A Wiley-Interscience, Canada, 1984)
    67. R. C. Jones, “A New Calculus for the Treatment of Optical Systems,” J. Opt. Soc. Am 31. 488-493 (1941).
    68. D. P. Chrissoulidis, E. E. Kriezis, A. G. Papagiannakis, Electromagnetics and Optics, 1st eds. (World Scientific, USA, 1992).
    69. C. Gu, G. Sornat, and J. Honh, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 14, 1070 (1996).
    70. 謝舒菁,同軸式體積全像儲存系統之研究與改良,國立中央大學光電所碩士論文,中華民國九十六年。

    QR CODE
    :::