| 研究生: |
王禹衡 Yu-Heng Wang |
|---|---|
| 論文名稱: |
運用文字探勘探討網路匿名性 對個人發言之影響 |
| 指導教授: |
周惠文
Hui-Wen Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 文字探勘 、情緒分析 、即時通訊 、網路匿名性 |
| 外文關鍵詞: | text mining, sentiment analysis, instant messaging, Internet anonymity |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
社群網路的發展使文字的資料量大幅度的提升,這些資料具有高度的潛在價值,相關的文字探勘研究也日增月益。然而在更早以前即時通訊就已經作為溝通媒介被大量使用,其也有大量的文本可作為文字探勘的素材,卻鮮少有人對其進行分析。
本論文透過實驗設計不同即時通訊的環境,觀察受測者之間的溝通與討論,並以情緒強度代表受測者在主題討論時的投入程度。在情緒強度較高時代表其對主題的討論較投入,在情緒強度較低時代表其對主題的討論較不投入。故實驗設計的目的在於探討匿名性是否可以影響受測者在進行即時通訊時的情緒強度。
在語料庫的建立中,以實驗室設計法設計匿名與具名的網路討論環境,所有受測者在實驗中都會遇到兩種不同的討論環境,並設計與其課程相關的主題讓受測者進行討論。之後對其討論內容進行文字探勘與情緒分析。在情緒分析中使用字典法將斷詞結果與情緒字典(NTUSD)進行連結,並透過WordNet與SentiWordNet給予情緒詞彙的情緒強度(不慮正向或負向),再根據不同的討論環境、主題與討論者進行結果分析。
由分析結果得知,討論者在進行討論時的情緒強度受到討論環境匿名性影響,且在匿名環境下情緒強度較高。在結論上,本研究認為在企業會議、學校專題等此種有明確討論主題的情況下,匿名環境的討論者情緒強度較高,更能不忌諱的投入討論。
Social networks have recently become a valuable resource of text mining. Research on various types of social networks has gained much attention recent years. However, far too little attention has been paid to instant messaging, which is a format of computer-mediated communication (CMC) and contains a huge amount of text data.
Laboratory experiment method approach was employed to build text corpus. Participates of the experimental attended two different discussion environments: anonymous and onymous. Subject in each discussion environment would discuss a specific social issue. After words segmentation, words were marked as a sentiment word by using sentiment dictionary: NTUSD and given a sentiment score by linking WordNet and SentiWordNet. This study use sentiment score to indicate the degree of emotional level of each individual who participated in the social issue discussion. Higher sentiment score indicates more emotional during the discussion.
The results showed that Internet anonymity have significant effects on the sentiment scores. In conclusion, anonymity environment will make discussants more emotional, and may result in, a more thorough discussion.
中文文獻
黃居仁、謝舒凱、洪嘉馡、陳韻竹、蘇依莉、陳永祥、黃勝偉(2010)。中文詞彙網路:跨語言知識處理基礎架構的設計理念與實踐。中國語文信息學報,24(2),14-23。
張秀華、曾中蓮、周惠文(2007)。網路匿名性及人格特質分組對群體發言廣度之影響。資訊管理學報,14(3),1-17。
牛更楓、周宗奎、孫曉軍、范翠英(2015)。網絡匿名性和同伴網絡偏差行為對大學生網絡偏差行為的影響:自我控制的調節作用。中國特殊教育,11,73-78。
簡恆信(1999)。虛擬社群匿名行為模式研究-以網際網路電子布告欄為例。東吳大學社會學系碩士論文,台北市。
周佳慧(2016)。大五人格、領導部屬交換關係、工作滿意度與員工建言和助人行為之研究。國立中央大學企業管理學系在職專班碩士論文,桃園市。
鐘安(2013)。論網路匿名言論之保障-以身分揭露程序為中心。國立政治大學法律學研究所碩士論文,台北市。
喻欣凱(2008)。運用支援向量機與文字探勘於股價漲跌趨勢之預測。輔仁大學資訊管理學系碩士論文,新北市。
英文文獻
Baccianella, S., Esuli, A., and Sebastian, F. (2010). SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.
Christopherson, K. M. (2007). The positive and negative implications of anonymity in Internet social interactions: "On the Internet, Nobody Knows You're a Dog". Computers in Human Behavior, 23(6), 3038-3056
Feldman, R. and Sanger J. (2007). The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. New York: Cambridge University Press.
Han, J., Kamber, M., and Pei, J. (2006). Data Mining: Concepts and Techniques: Morgan Kaufmann. Elsevier. Waltham, Massachusetts.
Hayne, S. C. and Rice, R. E. (1997). Attribution accuracy when using anonymity in group support systems. International Journal of Human-Computer Studies, 47(3), 429-452.
Herring, S. C. and Stoerger, S. (2013). Gender and (A)nonymity in Computer-Mediated Communication. Handbook of Language and Gender, 2nd edition(chap. 29, 567-586). Hoboken, NJ: Wiley-Blackwell Publishing.
Hiltz, S. R. and Turoff, M. (1978). The Network Nation: Human Communication via Computer. Addison-Wesley. Bosteon, Massachusetts.
Jong, B. S., Lai, C. H., Hsia, Y. T., and Lin, T. W. (2013). Effects of Anonymity in Group Discussion on Peer Interaction and Learning Achievement. IEEE Transactions on education, 56(3), 292-299.
Ku L. W. and Chen, H. H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval. Journal of American Society for Information Science and Technology, 58(12), 1838-1850.
Ma W. Y. and Chen K. J. (2003). A bottom-up Merging Algorithm for Chinese Unknown Word Extraction. Proceedings of ACL workshop on Chinese Language Processing, 17, 31-38.
Mehrabian, A. (1971). Silent Messages. Wadsworth Publishing Company, Inc. Belmont, California.
Rice, R. E. and Love, G. (1987). Electronic emotion: Socio-emotional content in a computer-mediated communication network. Communication Research, 14(1), 85-105.
Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing and Management, 24(5), 513–523.
Suler J. (2004). The Online Disinhibition Effect. CyberPsychology and Behavior, 7(3), 321-326.
Sullivan, D. (2001). Document Warehousing and Text Mining: Techniques for Improving Business Operations, Marketing and Sales. New York: Wiley.
Witten I. H., and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and Techniques. Elsevier. San Francisco, California.