| 研究生: |
陳偉桓 Wei-Huan Chen |
|---|---|
| 論文名稱: |
燃煤電廠與水泥廠之汞排放特性與質量流布探討 Characteristics of mercury emissions and mass flows in coal-fired power plant and cement plant |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 汞及其化合物 、燃煤電廠 、水泥廠 、質量流布與平衡 、飛灰富集能力 |
| 外文關鍵詞: | Mercury speciation, Coal-fired power plants, Cement plant, Mass distribution and mass balance, Enrichment ability of fly ash |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對燃煤電廠及水泥廠進行汞質量流布與平衡調查,及其煙道氣之汞排放特性進行探討,並同時採集其製程副產物,用以深究循環經濟下,因燃煤電廠之設備操作影響汞之流向,而水泥廠接收不穩定汞濃度之飛灰做為再生物料使用,於此情形下之汞質量流布。本研究燃煤電廠之煙道氣汞濃度介於0.010 ~ 0.141 μg/Nm3之間,其中以元素汞為主要排放汞物種,且粒狀汞之排放濃度相對穩定,但粒狀物上的汞含量介於0.005 ~ 0.030 mg Hg/g PM,遠高於飛灰之汞含量。電廠中主要汞來源為煤炭,輸入超過98%之總汞輸入量,而海水平均貢獻1.4%之總汞輸入量;而汞主要以飛灰及脫硫海水為主要輸出形式,分別佔31.4% ~ 91.2%與2.33% ~ 63.4%。汞質量流布變化藉由飛灰之特性分析瞭解,飛灰之汞富集能力與其捕捉氯及硫之多寡有關,更進一步由煤炭氯之含量得知,氯高度限制飛灰之汞富集能力,因高溫下產生之HCl可直接與Hg0反應,但硫因為高溫含氧燃燒使得SOx生成,其與汞在吸附點位上為競爭關係,須將硫進一步轉化才能協助捕捉Hg0。水泥廠汞輸入主要以石灰石(17.4 g/hr)為主,其次為鐵渣(9.23 g/hr),再者為煤灰(6.71g/hr),由此可見煤灰的使用,改變了水泥廠汞輸入結構;而輸出以熟料為大宗,輸出流率為3.01 g/hr並佔總輸出之66.3%,而煙道氣之汞輸出為1.53 g/hr,佔輸出之33.7%。造成汞質量輸入/輸出之差距以及較低之汞排放濃度與係數(煙囪之汞排放濃度為4.78 μg/Nm3,汞排放係數為7.6 mg Hg/ton clinker)之原因,可能源自於飛灰具有較高之汞富集能力,並透過飛灰回流系統將汞留存於系統之中,因此若是電廠之汞輸出以飛灰為主,於其再利用過程中,將改變水泥生產系統之汞輸入結構,並增加汞輸入量(煤灰汞輸入占總輸入之16.4%),值得進一步探討。
This study investigates the characteristics of mercury emitted from a coal-fired power plant and a cement plant. Also, the feeding materials and products of the processes are sampled to investigate how the circular economy affects the distribution and mass balance of mercury in the cement plant. For the coal fired power plant, the HgT concentration emitted from the stack ranges from 0.010 to 0.141 μg /Nm3 while the emission of HgP is relatively stable. The mercury content on the particulate matter ranges from 0.005 to 0.030 mg Hg/g PM, which is much higher than the mercury content in fly ash. The majority of mercury input is from coal, accounting for 98% of input and the rest is from seawater applied for SOx removal. The mercury output include fly ash and desulfurized seawater, accounting for 31.4% ~ 91.2% and 2.33% ~ 63.4%, respectively. The variation of mercury mass distribution is investigated by analyzing the characteristics of fly ash and the mercury enrichment of fly ash is related to the chlorine and sulfur contents. Due to the high operating temperature and the presence of oxygen, the chlorine would be transferred to HCl which can directly oxidize Hg0 or incorporate with fly ash to form Hgp, and sulfur would be oxidized to sulfur oxide which would compete for adsorption sites with Hg0. Reactions can change the characteristic of sulfur to assist capturing Hg0. As for the cement plant investigated, the main source of mercury input is limestone (17.4 g/hr), followed by iron slag (9.23 g/hr) and the third is fly ash from coal combustion (6.71g/hr). The use of coal-fired ash changes the mercury input structure of cement plant and also increases the mercury input. The output includes clinker (3.01 g/hr) and the flue gas (1.53 g/hr). The difference in mercury mass input/output and the low mercury emission concentration (4.78 μg/Nm3) and low mercury emission factor (7.6 mg Hg/ton) may be due to the fact that fly ash has a high mercury enrichment capability, and retains significant amount of mercury in the system through the fly ash recycling process Therefore, if the mercury output of the power plant is mainly fly ash, the mercury input structure in the cement plant system will change and the mercury input will increase (coal ash accounts for 16.4% of the total mercury input), and is worthy of further investigation.
Agarwalla, H., Senapati, R. N. & Das, T. B. (2021) Mercury emissions and partitioning
from Indian coal-fired power plants. Journal of Environmental Sciences 100, 28-
33.
ASTM (2016) Standard test method for elemental, oxidized, particle-bound and
mercury in flue gas generated from coal-fired stationary sources (Ontario hydro
method). World Trade Organization Technical Barriers to Total Trade (TBT)
Committee.
Bellanger, M., Pichery, C., Aerts, D., Berglund, M., Castaño, A., Čejchanová, M., &
Grandjean, P. (2013). Economic benefits of methylmercury exposure control in
Europe: monetary value of neurotoxicity prevention. Environmental Health, 12(1),
1-10.
Braune, B. M., Outridge, P. M., Fisk, A. T., Muir, D. C. G., Helm, P. A., Hobbs, K., &
Stirling, I. (2005). Persistent organic pollutants and mercury in marine biota of the
Canadian Arctic: an overview of spatial and temporal trends. Science of the Total
Environment, 351, 4-56.
Choi, H.K., Lee, S.H., Kim, S.S., 2009. The effect of activated carbon injection rate on
the removal of elemental mercury in a particulate collector with fabric filters. Fuel
Processing Technology 90 (1), 107–112.
Chou, C. P., Chang, T. C., Chiu, C. H., & Hsi, H. C. (2018). Mercury speciation and
mass distribution of cement production process in Taiwan. Aerosol and Air Quality
Research, 18(11), 2801-2812.
Chou, C. P., Chiu, C. H., Chang, T. C., & Hsi, H. C. (2021). Mercury speciation and
mass distribution of coal-fired power plants in Taiwan using different air pollution
control processes. Journal of the Air & Waste Management Association, 71(5),
553-563.
Evers, D. C., DiGangi, J., Petrlík, J., Buck, D. G., Šamánek, J., Beeler, B., & Regan, K.
(2014). Global mercury hotspots: new evidence reveals mercury contamination
regularly exceeds health advisory levels in humans and fish worldwide. BRI-IPEN
Science Communications Series, 34, 2014.
Finkelman, R. B. (1993). Trace and minor elements in coal. Inorganic geochemistry
(pp. 593-607). Springer, Boston, MA.
Gmelin, L. (1846). Hand Book of Chemistry Vol-6. Cavendish Society; London.
Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of
methylmercury: environmental health research implications. Environmental
Health Perspectives, 118(8), 1137-1145.
Greenwood, N. N., & Earnshaw, A. (2012). Chemistry of the Elements. Elsevier.
Hrdlicka, J.A., Seames, W.S., Mann, M.D., Muggli, D.S., & Horabik, C.A. (2008).
Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters.
Environmental Science & Technology, 42 (17), 6677–6682.
Hsu, C. J., Chen, Y. H., & Hsi, H. C. (2020). Adsorption of aqueous Hg2+ and inhibition
of Hg0 re-emission from actual seawater flue gas desulfurization wastewater by
using sulfurized activated carbon and NaClO. Science of The Total Environment,
711, 135172.
Huang, W. J., Xu, H. M., Qu, Z., Zhao, S. J., Chen, W. M., & Yan, N. Q. (2016).
Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury
oxidation in coal-fired flue gas. Fuel Processing Technology, 149, 23-28.
Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., & Korrick,
S. (2012). Evidence on the human health effects of low-level methylmercury
exposure. Environmental Health Perspectives, 120(6), 799-806.
Kaupp, M., & von Schnering, H. G. (1993). Gaseous mercury (IV) fluoride, HgF4: an
ab initio study. Angewandte Chemie International Edition in English, 32(6), 861-
863.
Li, C., Duan, Y., Tang, H., Zhu, C., Li, Y., Zheng, Y. & Liu, M. (2018) Study on the Hg
emission and migration characteristics in coal-fired power plant of China with an
ammonia desulfurization process. Fuel, 211, 621-628.
Li, X., Li, Z., Fu, C., Tang, L., Chen, J., Wu, T., Lin, C., Feng, X. & Fu, X. (2019b)
Fate of mercury in two CFB utility boilers with different fueled coals and air
pollution control devices. Fuel, 251, 651-659.
Li, X., Li, Z., Wu, T., Chen, J., Fu, C., Zhang, L., & Wang, Z. (2019a). Atmospheric
mercury emissions from two pre-calciner cement plants in Southwest China.
Atmospheric Environment, 199, 177-188.
Li, Z., Chen, X., Liu, W., Li, T., Chen, J., Lin, C., Sun, G. & Feng, X. (2019c) Evolution
of four-decade atmospheric mercury release from a coal-fired power plant in
North China. Atmospheric Environment, 213, 526-533.
Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). Chemical
Rubber Company press.
Mlakar, T. L., Horvat, M., Vuk, T., Stergaršek, A., Kotnik, J., Tratnik, J., & Fajon, V.
(2010). Mercury species, mass flows and processes in a cement plant. Fuel, 89(8),
1936-1945.
Riedel, S., & Kaupp, M. (2009). The highest oxidation states of the transition metal
elements. Coordination Chemistry Reviews, 253(5-6), 606-624.
Riedel, S., Kaupp, M., & Pyykkö, P. (2008). Quantum chemical study of trivalent group
12 fluorides. Inorganic Chemistry, 47(8), 3379-3383.
Rizeq, R. G., Hansell, D. W., & Seeker, W. R. (1994). Predictions of metals emissions
and partitioning in coal-fired combustion systems. Fuel Processing Technology,
39(1-3), 219-236.
Sandheinrich, M. B., Bhavsar, S. P., Bodaly, R. A., Drevnick, P. E., & Paul, E. A. (2011).
Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.
Ecotoxicology, 20(7), 1577-1587.
Srivastava, R. K., Hutson, N., Martin, B., Princiotta, F., & Staudt, J. (2006). Control of
mercury emissions from coal-fired electric utility boilers. Environmental Science
& Technology, 40(5), 1385-1393.
Su, S., Liu, L., Wang, L., Syed-Hassan, S. S. A., Kong, F., Hu, S., Wang, Y., Jiang, L.,
Xu, K., Zhang, A. & Xiang, J. (2017) Mass flow analysis of mercury
transformation and effect of seawater flue gas desulfurization on mercury removal
in a full-scale coal-fired power plant. Energy & Fuels, 31 (10), 11109-11116.
Suarez Negreira, A., & Wilcox, J. (2015). Uncertainty analysis of the mercury oxidation
over a standard SCR catalyst through a lab-scale kinetic study. Energy & Fuels,
29(1), 369-376.
Tang, N. & Pan, S. (2013) Study on mercury emission and migration from large scale
pulverized coal fired boilers. Journal of Fuel Chemistry and Technology, 41 (4),
484-490.
Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H. & Li, K. (2016) Actual mercury
speciation and mercury discharges from coal-fired power plants in Inner Mongolia,
Northern China. Fuel, 180, 194-204.
Tao, S., Li, C., Fan, X., Zeng, G., Lu, P., Zhang, X., & Fan, C. (2012). Activated coke
impregnated with cerium chloride used for elemental mercury removal from
simulated flue gas. Chemical Engineering Journal, 210, 547-556.
Uaciquete, D. L., Sakusabe, K., Kato, T., Okawa, H., Sugawara, K., & Nonaka, R.
(2021). Influence of unburned carbon on mercury chemical forms in fly ash
produced from a coal-fired power plant. Fuel, 300, 120802.
UNEP, (2019) "Global Mercury Assessment 2018. "
US EPA, (2012) "National emission standards for hazardous air pollutants from coal-
and oil-fired electric utility steam generating units and standards of performance
for dossil-fuel-fired electric utility, industrial-commercial institutional, and small
industrial-commercial-institutional steam generating units; Final Rule. "
US EPA, (2013) " National emission standards for hazardous air pollutants from coal-
and oil-fired electric utility steam generating units and standards of performance
for fossil-fuel-fired electric utility, industrial-commercial institutional, and small
industrial-commercial-institutional steam generating units; Rules and
Regulations. "
US EPA, (2017) " Method 30B-Determination of total vapor phase mercury emissions
from coal-fired combustion sources using carbon sorbent traps. "
Wang, F., Wang, S., Zhang, L., Yang, H., Wu, Q., & Hao, J. (2014). Mercury enrichment
and its effects on atmospheric emissions in cement plants of China. Atmospheric
environment, 92, 421-428.
Wang, F., Wang, S., Zhang, L., Yang, H., Wu, Q., & Hao, J. (2016). Characteristics of
mercury cycling in the cement production process. Journal of Hazardous
Materials, 302, 27-35.
Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F. & Ancora, M.
(2010) Mercury emission and speciation of coal-fired power plants in China.
Atmospheric Chemistry and Physics, 10 (3), 1183-1192.
Wilcox, J., Rupp, E., Ying, S. C., Lim, D. H., Negreira, A. S., Kirchofer, A., & Lee, K.
(2012). Mercury adsorption and oxidation in coal combustion and gasification
processes. International Journal of Coal Geology, 90, 4-20.
Won, J. H., & Lee, T. G. (2012). Estimation of total annual mercury emissions from
cement manufacturing facilities in Korea. Atmospheric Environment, 62, 265-271.
Yang, A. Y., Yan, Z. C., Hui, R. T., Shen, Z. Y., & Zhuang, K. (2015). The abundance,
distribution, and modes of occurrence of Hg in Chinese coals. Science Technology
and Engineering, 15(32), 1671-815.
Yorifuji, T., Tsuda, T., & Harada, M. (2013). Minamata disease: a challenge for
democracy and justice. Late Lessons from Early Warnings: Science, Precaution,
Innovation. Copenhagen, Denmark: European Environment Agency.
Yudovich, Y. E., & Ketris, M. P. (2005). Mercury in coal: A review: Part 1.
Geochemistry. International Journal of Coal Geology, 62(3), 107-134.
Zhang, C., Zhang, Y. H., Wang, Y. M., Wang, D. Y., Luo, C. Z., Xu, F., & He, X. Q.
(2017). Characteristics of mercury emissions from modern dry processing
cement plants in chongqing. Huanjing Kexue, 38(6), 2287-2293.
Zhang, L. (2007). Research on mercury emission measurement and estimate from
combustion resources. Zhejiang University, China (in Chinese).
Zhao, B., Li, Z., Zhou, W., (2019a). Research progress of catalysts for synergistic
denitrification and mercury removal. Zhejiang Xinan Chemical Industrial Group
Cooperation Limited company, 50 (2), 38–41.
Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., & Lu, J. (2019b). A review on
mercury in coal combustion process: Content and occurrence forms in coal,
transformation, sampling methods, emission and control technologies. Progress
in Energy and Combustion Science, 73, 26-64.
Zhou, Q., Duan, Y., Zhu, C., Zhang, J., She, M., Wei, H., & Hong, Y. (2015). Adsorption
equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash.
Korean Journal of Chemical Engineering, 32(7), 1405-1413.
Zhou, W., Yu, L., Li, D., & Shiau, Y. C. (2016). Thermodynamic effects of alkaline
earth metals on homogenous mercury oxidation during calcium carbonate (CaCO3)
and coal combustion. Toxicological & Environmental Chemistry, 98(3-4), 303-
312.
Zhou, Z. J., Liu, X. W., Zhao, B., Chen, Z. G., Shao, H. Z., Wang, L. L., & Xu, M. H.
(2015). Effects of existing energy saving and air pollution control devices on
mercury removal in coal-fired power plants. Fuel Processing Technology, 131,
99-108.
行政院環保署空氣品質保護處,固定污染源汞排放管制與空品監測成果,2020。
行政院環保署環境檢驗所,水中汞檢測方法-氧化/吹氣捕捉/冷蒸氣原子螢光光
譜法(NIEA W331.50B)。
行政院環境保護署環境檢驗所,排放管道中重金屬檢測方法 (NIEA A302.73C),
2010。
行政院環境保護署環境檢驗所,硫、氯元素含量檢測方法-燃燒管法 (NIEA
M402.01C)。
行政院環境保護署環境檢驗所,碳、氫、硫、氧、氮元素含量檢測方法-元素分
析儀法 (NIEA M403.02B)。