| 研究生: |
陳凱欣 Kai-shen Chen |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性 Photocatalytic activity of multi - walled carbon nanotube supported TiO2 photocatalyst by sol-gel method |
| 指導教授: | 秦靜如 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 二氧化鈦 、多壁奈米碳管 、水楊酸 、溶膠凝膠法 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶膠凝膠法(sol-gel),以MWCNTs為載體,透過有機前驅物鈦酸四乙酯(TEOT),製備MWCNTs/TiO2奈米光複合觸媒,光催化降解水楊酸之影響。研究係於批次式光催化反應器中進行,測試不同的製備條件如MWCNTs:TiO2之觸媒配比、鍛燒溫度及不同光源對水楊酸光催化降解能力。透過FT-IR圖譜可得知,改質後之MWCNTs表面可增加含氧官能基,而FE-SEM、TEM影像顯示,MWCNTs分散性良好,提高碳管純度,以及表面的破壞所形成缺陷位址有助於TiO2合成。
研究結果顯示,碳管添加量為5 wt%之MWCNTs/TiO2複合材料,於UV光下光催化降解水楊酸效果最佳,可能因碳管吸附之濃縮作用,以及光催化時有助於預防TiO2電子-電洞對再結合,透過協同作用增加TiO2光催化能力,但添加過多的奈米碳管時,會因碳管吸收光源,導致溶液中的MWCNTs/TiO2複合光觸媒之催化能力下降。鍛燒溫度方面,隨著溫度越高,TiO2顆粒燒結團聚現象嚴重,會導致光催化能力下降。透過Langmuir -Hinshelwood反應動力模式進行擬合,MWCNTs/TiO2複合材料光觸媒在UV光下進行光催化,其光源波長較短,觸媒上的電子較易被激發使得催化能力較強,反應碰撞較為激烈,較符合擬二階反應動力模式。
In this study, MWCNTs/TiO2 composites were prepared using multi- walled carbon nanotubes as a starting material, and titanium ethoxide as the precursor of TiO2. This process involves the hydrolysis and polycondensation of a precursor and subsequent formation of the gel, which results in a crystalline network structure after heat treatment. The influences of MWCNTs: TiO2 ratio and calcination temperature on the physical as well as chemical characteristic and photocatalytic ability, which was examined by conduction photocatalytic degradation of of salicylic acid by both UV and visible lights.
Comparing to the TiO2 catalysts systhesized in this work, TiO2 /MWCNTs composites has better photocatalytic activity. This suggests that the MWCNTs may hinder the recombination of electron and electron holes. However, when MWCNTs: TiO2 is higher than 5%, the addition of MWCNTs reduced the photocatalytic ability because that the MWCNTs are black and would block or adsorb the incident light.
Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and
Hiura, H., “Opening carbon nanotubes with oxygen and implications for
filling”, Nature, 362(6420), 522 - 525 (1993).
Anpo, M.,Yamashita, H., Ikeue, K.,Fujishima, Y., Zhang, S. G., Ichihashi , Y.,
Park, D. R., Suzuki, Y., Koyano, K., and Tatsumi, T., “Photocatalytic
reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous
zeolite catalysts”, Catalysis Today, 44, 327 - 332(1998).
Avile´s, F., Cauich-Rodrı´guez , J.V., Moo-Tah, L., May-Pat, A., and Vargas-
Coronado, R., ” Evaluation of mild acid oxidation treatments for MWCNT
Functionalization” , Carbon, 47, 2970 - 2975(2009).
Choi, W., Hong, S. J., Chang, Y. S., and Cho, Y. E., “Photocatalytic
degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV
or solar light irradiation”, Sci. Technol., 34, 4810 (2000).
Diebold, U., “The surface science of titanium dioxide”, Surface Science
Reports, 48, 53 - 229(2003).
Doeuff, S. Henry, M. Sanchez, C. Livage, J. “ Hydrolysis of titanium alkoxide :
Modification of the molecular precursor by acetic acid. “Journal of
non-crystalline solids, 89 , 206 - 216(1987).
Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., “ Purification of
nanotubes, “ Nature , 367(6463), 519 (1994).
Fan, W., Lian, G., and Jing, Sun., “Anatase TiO 2 -Coated Multi-Wall Carbon
Nanotubes with the Vapor Phase Method” ,. Am. Ceram. Soc., 89 (2),731 –
733 (2006).
Fujishima, A., and Honda, K., “Electrochemicalphotolysis of water at
semiconductor electrode”, Nature, 238, 37(1972).
Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A., and
Furic, K., “Microstructure of nanosized TiO2 obtained by sol-gel
synthesis.“ Materials Letters ,28,.225 - 229 (1996).
Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., and Kaneko, K.,
“Effect of nanoscale curvature of single-walled carbon nanotubes on
adsorption of polycyclic aromatic hydrocarbons”, Nano letters, 7, 583 –
587 (2007).
Hague, D. C., and Mayo, M. J., “Controlling crystallinity during processing of
nanocrystalline titania. “, Journal of the American Ceramic Society , 77,
1957 - 1960 (1994).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., and
Kera, Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite
composite catalyst to remove nitrogen oxides in the atmosphere,” Applied
Catalysis B: Environmental, 30, 429 – 436 (2001).
Heintz, O., Robert, D., and Weber, J. V., “Comparison of the degradation of
benzamide and acetic acid on different TiO2 photocatalysts”, Photochem.
Photobiol. A:Chem., 135, 77 (2000).
Hou, P.X., Liu, C., and Cheng, H.M., “ Purification of carbon nanotubes,”
Carbon , 46 , 2003 - 2025 (2008).
Hung, C. H., and Marinas, B. J., “Role of chlorine and oxygen in the
photocatalytic degradation of trichloroethylene vapor on TiO 2 films,”
Environmetnal Science & Technolog, 31, 562 – 568 (1997).
Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, 354, 56
(1991).
Jiang, G., Zheng, X., Wang, Y., Li, T., and Sun X., “Photo-degradation of
methylene blue by multi-walled carbon nanotubes/TiO2 composites”,
Powder Technology , 207, 465 - 469 (2011).
Kang, S. Z., Cui, Z., and Mu, Jin., “Composite of Carboxyl‐Modified Multi‐
walled Carbon Nanotubes and TiO2 Nanoparticles: Preparation and
Photocatalytic Activity, Fullerenes, Nanotubes and Carbon
Nanostructures”, Carbon Nanostructures , 15, 81 – 88 (2007).
Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., and
Dresselhaus, M.S., “ Thermal stability and structural changes of
double-walled carbon nanotubes by heat treatment“, Chemical Physics
Letters, 398(1–3) ,87 - 92 (2004).
Lambert, J. M., Ajayan, P. M., Bernier, P., Planeix, J. M., Brotons, V., Coq, B.,
and Castaing, J.,“ Improving conditions towards isolating single-shell
carbon nanotubes “ Chemical Physics Letters, 226(3–4), 364–371 (1994).
Linsebigler, L., Lu, G., and Yates, J. T., “Photocatalysis on TiO2 surfaces:
principles, mechanisms, and selected results”, Chem. Rev., 95, 735 - 758
(1995).
Lu, C. S., Su, F. S., and Hu, S. K., “Surface modification of carbon nanotubes
for enhancing BTEX adsorption from aqueous solutions”, Applied Surface
Science, 254, 7035 - 7041 (2008).
Nosaka, Y., and Fox, M. A., “Kinetics for electron transfer fromlaser - pulse –
irrad colloidal semiconductors to adsorbed methylviologen”, J. Phys.
Chem., 92 , 1893 (1988).
Pan, B., and Xing, B., “Adsorption mechanisms of organic chemicals on
carbon nanotubes”, Environmental Science and Technology, 42, 9005 –
9013 (2008).
Paradise, M., and Goswami, T., “Carbon nanotubes-Production and industrial
applications”, Materials and design, 28, 1477 - 1489 (2007).
Pyrgiotakis, G., Lee, SH., and Sigmund, W. M., “Advanced Photocatalysis
with anatase nano-coated multi-walled carbon nanotubes”, Materials
Research Society, 83, 8 (2005).
Rosca, D., Watari, F., Uo, M., and Akasaka, T., “Oxidation of mutiwalled
carbon nanotubes by nitric acid”, Carbon, 43, 3124 - 3131 (2005).
Shen, E., Hao, E., He, F., and Fang, Y., “TiO2 -based photocatalysis and its
applications for wastewater treatment” , Progress in Chemistry, 4 (1998).
Shivalingappa, L., Sheng, J., and Fukami, T., “Photocatalytic effect in platinum
doped titanium dioxide films”, Vacuum, 48, 413 - 416 (1997).
Teruhisa, O., Koji, S., Kojiro, T., and Michio, M., “Morphology of a TiO2
Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline
Phases” , Journal of Catalysis, 203, 82 - 86 (2001).
Veljko, R. D., Aleksandar, D. M., Miodrag, M., Petar, S.U., Rada, D. P.,
Velimir , R. R., and Djordje, T. J., “Preparation of TiO2/ carbon nanotubes
photocatalysts : The influence of the method of oxidation of the carbon
nanotubes on the photocatalytic activity of the nanocomposites”, Ceramics
International , 38 , 6123 – 6129 (2012).
Wang, K. H., Hsieh, Y. Hsu., Wu, C. H., and Chang, C.Y., “ The pH and anion
effects on the heterogeneous photocatalytic degradation of
o-methylbenzoic acid in TiO2 aqueous suspension ”, Chemosphere, 40,
389 - 394 (2000).
Wang, S., Gong, Q., Zhu, Y., and Liang, J., “Influence of Functional Groups on
the Dispersion of TiO2 Particles on Carbon Nanotube”, Journal of
Dispersion Science and Technology, 31, 1307 - 1310(2010).
Wang, W., Serp, P., Kalck, P.,and Faria, J.L., “ Visible light photo –
degradation of phenol on MWNT-TiO2 composite catalysts prepared by a
modified sol–gel method”, J Mol Catal A: Chem, 235(1–2), 94- 9(2005).
Wang, Z.W., Liu, C. L., and Liu, Z.G., et al., “π-π Interaction enhancement on
the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer
composites”, Chemical physics letters, 407, 35 – 39 (2005).
Woan, K., Pyrgiotakis, G.,and Sigmund, W., “Photocatalytic carbon
-nanotube-TiO2 composites ”, Adv Mater, 21, 2233 - 9(2009).
Yang, J., Mei, S., and Ferreira, J. F. “ Hydrothermal synthesis of nanosized
titania powder: influence of peptization and peptizing agents on the
crystalline phased and phase transition”, Journal of the American Ceramic
Society , 83, 1361 – 1368 (2000).
Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., “ Photoreactive
TiO 2 /carbon nanotube composites: synthesis and reactivity”, Environ Sci
Technol , 42(13), 4952-7 (2008).
Yen, C. Y., Lin, Y. F., Hung, C. H., Tseng, Y.H., Ma, C.C., Chang, M.C., et
al. , “The effects of synthesis procedures on the morphology and
photocatalytic activity of multi-walled carbon nanotubes/ TiO 2
nanocomposites”, Nanotechnology , 19, 4 (2008)
Yoldas, B. E., “Hydrolysis of titanium alkoxide and effect of hydrolytic
polycondensation parameters”, Journal of Materials Science 21, 1087 –
1092 (1986).
Yu,Y., Yu, J. C., and Yu, J.G. et al., “Enhancement of photocatalytic activity of
mesoporous TiO2 by using carbon nanotubes”, Applied Catalysis A:
General , 289, 186 - 196 (2005).
Yudasaka, M., Ichihashi, T., Kasuya, D., Kataura, H., and Iijima, S.,
“ Structure changes of single-wall carbon nanotubes and single-wall
carbon nanohorns caused by heat treatment,“ Carbon ,41(6), 1273 - 1280
(2003).
Yudasaka, M., Kataura, H., Ichihashi, T., Qin, L.C., Kar, S., and Iijima, S.,
“ Diameter enlargement of HiPco single-wall carbon nanotubes by heat
treatment,“ Nano Letter, 1(9), 487 - 489 (2001).
Zhang, D., Shi, L., Fang, J., Li, X., and Dai, K., ” Preparation and modification
of carbon nanotubes,” Materials Letters, 59, 4044 - 4047 (2005).
Zoltán, N., Christel, D., Ákos, K., Duncan, A., László, F., Jin, W. S., and Klara,
H., “Preparation of homogeneous titania coating on the surface of
MWCNT”, Composites Science and Technology, 71 , 87 - 94 (2011).
化工產業技術知識網: http://www.chemtech.com.tw
申昌生化科技 CBT Nano-scale Supplier carbon nanotube
成會明,「奈米碳管」,五南圖書出版社,2004
吳怡貞,「利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究」,
碩士論文,國立中山大學環境工程研究所,高雄,2007。
李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第 11 卷第 2 期,
第 140-159 頁,2003。
杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論
文,國立中央大學環境工程研究所,中壢,2011。
周貝倫,「純化程序對奈米碳管表面特性影響之研究」,碩士論文,國立
中央大學環境工程研究所,中壢,2006。
洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷
第 1 期,第 23-30 頁,2002。
高濂、鄭珊、張青紅,奈米光觸媒,五南圖書出版公司,(2004)。
曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,
博士論文,國立成功大學化學工程學系,臺南,2009。
馮怡蓁,「含二氧化鈦中孔洞材料之製備、鑑定及催化應用」,碩士論文,
國立中央大學化學研究所,臺南,2009。
黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第 50卷
第 2 期,第18-25頁,2003。
維基百科: http://zh.wikipedia.org/