跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳凱欣
Kai-shen Chen
論文名稱: 以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性
Photocatalytic activity of multi - walled carbon nanotube supported TiO2 photocatalyst by sol-gel method
指導教授: 秦靜如
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 二氧化鈦多壁奈米碳管水楊酸溶膠凝膠法
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠凝膠法(sol-gel),以MWCNTs為載體,透過有機前驅物鈦酸四乙酯(TEOT),製備MWCNTs/TiO2奈米光複合觸媒,光催化降解水楊酸之影響。研究係於批次式光催化反應器中進行,測試不同的製備條件如MWCNTs:TiO2之觸媒配比、鍛燒溫度及不同光源對水楊酸光催化降解能力。透過FT-IR圖譜可得知,改質後之MWCNTs表面可增加含氧官能基,而FE-SEM、TEM影像顯示,MWCNTs分散性良好,提高碳管純度,以及表面的破壞所形成缺陷位址有助於TiO2合成。
    研究結果顯示,碳管添加量為5 wt%之MWCNTs/TiO2複合材料,於UV光下光催化降解水楊酸效果最佳,可能因碳管吸附之濃縮作用,以及光催化時有助於預防TiO2電子-電洞對再結合,透過協同作用增加TiO2光催化能力,但添加過多的奈米碳管時,會因碳管吸收光源,導致溶液中的MWCNTs/TiO2複合光觸媒之催化能力下降。鍛燒溫度方面,隨著溫度越高,TiO2顆粒燒結團聚現象嚴重,會導致光催化能力下降。透過Langmuir -Hinshelwood反應動力模式進行擬合,MWCNTs/TiO2複合材料光觸媒在UV光下進行光催化,其光源波長較短,觸媒上的電子較易被激發使得催化能力較強,反應碰撞較為激烈,較符合擬二階反應動力模式。


    In this study, MWCNTs/TiO2 composites were prepared using multi- walled carbon nanotubes as a starting material, and titanium ethoxide as the precursor of TiO2. This process involves the hydrolysis and polycondensation of a precursor and subsequent formation of the gel, which results in a crystalline network structure after heat treatment. The influences of MWCNTs: TiO2 ratio and calcination temperature on the physical as well as chemical characteristic and photocatalytic ability, which was examined by conduction photocatalytic degradation of of salicylic acid by both UV and visible lights.
    Comparing to the TiO2 catalysts systhesized in this work, TiO2 /MWCNTs composites has better photocatalytic activity. This suggests that the MWCNTs may hinder the recombination of electron and electron holes. However, when MWCNTs: TiO2 is higher than 5%, the addition of MWCNTs reduced the photocatalytic ability because that the MWCNTs are black and would block or adsorb the incident light.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 1.1. 研究緣起 1 1.2. 研究內容與目的 2 1.3. 研究流程 4 第二章 文獻回顧 5 2.1. 奈米碳管 5 2.1.1 基本特性 5 2.1.2 奈米碳管製備方式 9 2.1.3 奈米碳管之改質方法 11 2.2. 二氧化鈦光觸媒 16 2.2.1 二氧化鈦結構特性 16 2.2.2 二氧化鈦光觸媒製備 19 2.2.3 光催化反應 23 2.2.4 二氧化鈦複合材料相關文獻 27 2.3. 水楊酸 (salicylic acid) 35 2.3.1水楊酸特性及來源 35 第三章 實驗方法 38 3.1. 實驗材料與設備 38 3.1.1 實驗材料 38 3.1.2實驗設備 39 3.2. 實驗方法 43 3.2.1 多壁奈米碳管改質 43 3.2.2 MWCNT/TiO2 複合顆粒製備 45 3.2.3 光催化分析 47 第四章 結果與討論 48 4.1. 材料特性鑑定分析 48 4.1.1 表面型態FE-SEM及EDS 49 4.1.2 穿透式顯微鏡(TEM)分析 55 4.1.3 氮孔隙分析孔洞分布、表面積及吸脫附情形 60 4.1.4 MWCNTs及複合材料之官能基分析 (FT-IR) 72 4.1.5 X-ray繞射(XRD)晶格結構分析 74 4.2. 光催化反應活性測試 81 4.2.1 背景實驗 82 4.2.2 水楊酸吸附試驗 84 4.3. MWCNTs:TiO2及光源對MWCNTs / TiO 2光催化能力影響 85 4.3.1 不同碳管添加量之MWCNTs / TiO 2 光觸媒UV光光催化 85 4.3.2 不同碳管添加量之MWCNTs / TiO 2 光觸媒可見光光催化 89 4.4. 鍛燒溫度對MWCNTs / TiO 2光催化降解能力之影響 94 第五章 結論與建議 97 5.1. 結論 97 5.2. 建議 98 參考文獻 99  

    Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and
    Hiura, H., “Opening carbon nanotubes with oxygen and implications for
    filling”, Nature, 362(6420), 522 - 525 (1993).
    Anpo, M.,Yamashita, H., Ikeue, K.,Fujishima, Y., Zhang, S. G., Ichihashi , Y.,
    Park, D. R., Suzuki, Y., Koyano, K., and Tatsumi, T., “Photocatalytic
    reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous
    zeolite catalysts”, Catalysis Today, 44, 327 - 332(1998).
    Avile´s, F., Cauich-Rodrı´guez , J.V., Moo-Tah, L., May-Pat, A., and Vargas-
    Coronado, R., ” Evaluation of mild acid oxidation treatments for MWCNT
    Functionalization” , Carbon, 47, 2970 - 2975(2009).
    Choi, W., Hong, S. J., Chang, Y. S., and Cho, Y. E., “Photocatalytic
    degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV
    or solar light irradiation”, Sci. Technol., 34, 4810 (2000).
    Diebold, U., “The surface science of titanium dioxide”, Surface Science
    Reports, 48, 53 - 229(2003).
    Doeuff, S. Henry, M. Sanchez, C. Livage, J. “ Hydrolysis of titanium alkoxide :
    Modification of the molecular precursor by acetic acid. “Journal of
    non-crystalline solids, 89 , 206 - 216(1987).
    Ebbesen, T. W., Ajayan, P. M., Hiura, H., and Tanigaki, K., “ Purification of
    nanotubes, “ Nature , 367(6463), 519 (1994).
    Fan, W., Lian, G., and Jing, Sun., “Anatase TiO 2 -Coated Multi-Wall Carbon
    Nanotubes with the Vapor Phase Method” ,. Am. Ceram. Soc., 89 (2),731 –
    733 (2006).
    Fujishima, A., and Honda, K., “Electrochemicalphotolysis of water at
    semiconductor electrode”, Nature, 238, 37(1972).
    Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A., and
    Furic, K., “Microstructure of nanosized TiO2 obtained by sol-gel
    synthesis.“ Materials Letters ,28,.225 - 229 (1996).
    Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., and Kaneko, K.,
    “Effect of nanoscale curvature of single-walled carbon nanotubes on
    adsorption of polycyclic aromatic hydrocarbons”, Nano letters, 7, 583 –
    587 (2007).
    Hague, D. C., and Mayo, M. J., “Controlling crystallinity during processing of
    nanocrystalline titania. “, Journal of the American Ceramic Society , 77,
    1957 - 1960 (1994).
    Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., and
    Kera, Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite
    composite catalyst to remove nitrogen oxides in the atmosphere,” Applied
    Catalysis B: Environmental, 30, 429 – 436 (2001).
    Heintz, O., Robert, D., and Weber, J. V., “Comparison of the degradation of
    benzamide and acetic acid on different TiO2 photocatalysts”, Photochem.
    Photobiol. A:Chem., 135, 77 (2000).
    Hou, P.X., Liu, C., and Cheng, H.M., “ Purification of carbon nanotubes,”
    Carbon , 46 , 2003 - 2025 (2008).
    Hung, C. H., and Marinas, B. J., “Role of chlorine and oxygen in the
    photocatalytic degradation of trichloroethylene vapor on TiO 2 films,”
    Environmetnal Science & Technolog, 31, 562 – 568 (1997).
    Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, 354, 56
    (1991).
    Jiang, G., Zheng, X., Wang, Y., Li, T., and Sun X., “Photo-degradation of
    methylene blue by multi-walled carbon nanotubes/TiO2 composites”,
    Powder Technology , 207, 465 - 469 (2011).
    Kang, S. Z., Cui, Z., and Mu, Jin., “Composite of Carboxyl‐Modified Multi‐
    walled Carbon Nanotubes and TiO2 Nanoparticles: Preparation and
    Photocatalytic Activity, Fullerenes, Nanotubes and Carbon
    Nanostructures”, Carbon Nanostructures , 15, 81 – 88 (2007).
    Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., and
    Dresselhaus, M.S., “ Thermal stability and structural changes of
    double-walled carbon nanotubes by heat treatment“, Chemical Physics
    Letters, 398(1–3) ,87 - 92 (2004).
    Lambert, J. M., Ajayan, P. M., Bernier, P., Planeix, J. M., Brotons, V., Coq, B.,
    and Castaing, J.,“ Improving conditions towards isolating single-shell
    carbon nanotubes “ Chemical Physics Letters, 226(3–4), 364–371 (1994).
    Linsebigler, L., Lu, G., and Yates, J. T., “Photocatalysis on TiO2 surfaces:
    principles, mechanisms, and selected results”, Chem. Rev., 95, 735 - 758
    (1995).
    Lu, C. S., Su, F. S., and Hu, S. K., “Surface modification of carbon nanotubes
    for enhancing BTEX adsorption from aqueous solutions”, Applied Surface
    Science, 254, 7035 - 7041 (2008).
    Nosaka, Y., and Fox, M. A., “Kinetics for electron transfer fromlaser - pulse –
    irrad colloidal semiconductors to adsorbed methylviologen”, J. Phys.
    Chem., 92 , 1893 (1988).
    Pan, B., and Xing, B., “Adsorption mechanisms of organic chemicals on
    carbon nanotubes”, Environmental Science and Technology, 42, 9005 –
    9013 (2008).
    Paradise, M., and Goswami, T., “Carbon nanotubes-Production and industrial
    applications”, Materials and design, 28, 1477 - 1489 (2007).
    Pyrgiotakis, G., Lee, SH., and Sigmund, W. M., “Advanced Photocatalysis
    with anatase nano-coated multi-walled carbon nanotubes”, Materials
    Research Society, 83, 8 (2005).
    Rosca, D., Watari, F., Uo, M., and Akasaka, T., “Oxidation of mutiwalled
    carbon nanotubes by nitric acid”, Carbon, 43, 3124 - 3131 (2005).
    Shen, E., Hao, E., He, F., and Fang, Y., “TiO2 -based photocatalysis and its
    applications for wastewater treatment” , Progress in Chemistry, 4 (1998).
    Shivalingappa, L., Sheng, J., and Fukami, T., “Photocatalytic effect in platinum
    doped titanium dioxide films”, Vacuum, 48, 413 - 416 (1997).
    Teruhisa, O., Koji, S., Kojiro, T., and Michio, M., “Morphology of a TiO2
    Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline
    Phases” , Journal of Catalysis, 203, 82 - 86 (2001).
    Veljko, R. D., Aleksandar, D. M., Miodrag, M., Petar, S.U., Rada, D. P.,
    Velimir , R. R., and Djordje, T. J., “Preparation of TiO2/ carbon nanotubes
    photocatalysts : The influence of the method of oxidation of the carbon
    nanotubes on the photocatalytic activity of the nanocomposites”, Ceramics
    International , 38 , 6123 – 6129 (2012).
    Wang, K. H., Hsieh, Y. Hsu., Wu, C. H., and Chang, C.Y., “ The pH and anion
    effects on the heterogeneous photocatalytic degradation of
    o-methylbenzoic acid in TiO2 aqueous suspension ”, Chemosphere, 40,
    389 - 394 (2000).
    Wang, S., Gong, Q., Zhu, Y., and Liang, J., “Influence of Functional Groups on
    the Dispersion of TiO2 Particles on Carbon Nanotube”, Journal of
    Dispersion Science and Technology, 31, 1307 - 1310(2010).
    Wang, W., Serp, P., Kalck, P.,and Faria, J.L., “ Visible light photo –
    degradation of phenol on MWNT-TiO2 composite catalysts prepared by a
    modified sol–gel method”, J Mol Catal A: Chem, 235(1–2), 94- 9(2005).
    Wang, Z.W., Liu, C. L., and Liu, Z.G., et al., “π-π Interaction enhancement on
    the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer
    composites”, Chemical physics letters, 407, 35 – 39 (2005).
    Woan, K., Pyrgiotakis, G.,and Sigmund, W., “Photocatalytic carbon
    -nanotube-TiO2 composites ”, Adv Mater, 21, 2233 - 9(2009).
    Yang, J., Mei, S., and Ferreira, J. F. “ Hydrothermal synthesis of nanosized
    titania powder: influence of peptization and peptizing agents on the
    crystalline phased and phase transition”, Journal of the American Ceramic
    Society , 83, 1361 – 1368 (2000).
    Yao, Y., Li, G., Ciston, S., Lueptow, R. M., and Gray, K. A., “ Photoreactive
    TiO 2 /carbon nanotube composites: synthesis and reactivity”, Environ Sci
    Technol , 42(13), 4952-7 (2008).
    Yen, C. Y., Lin, Y. F., Hung, C. H., Tseng, Y.H., Ma, C.C., Chang, M.C., et
    al. , “The effects of synthesis procedures on the morphology and
    photocatalytic activity of multi-walled carbon nanotubes/ TiO 2
    nanocomposites”, Nanotechnology , 19, 4 (2008)
    Yoldas, B. E., “Hydrolysis of titanium alkoxide and effect of hydrolytic
    polycondensation parameters”, Journal of Materials Science 21, 1087 –
    1092 (1986).
    Yu,Y., Yu, J. C., and Yu, J.G. et al., “Enhancement of photocatalytic activity of
    mesoporous TiO2 by using carbon nanotubes”, Applied Catalysis A:
    General , 289, 186 - 196 (2005).
    Yudasaka, M., Ichihashi, T., Kasuya, D., Kataura, H., and Iijima, S.,
    “ Structure changes of single-wall carbon nanotubes and single-wall
    carbon nanohorns caused by heat treatment,“ Carbon ,41(6), 1273 - 1280
    (2003).
    Yudasaka, M., Kataura, H., Ichihashi, T., Qin, L.C., Kar, S., and Iijima, S.,
    “ Diameter enlargement of HiPco single-wall carbon nanotubes by heat
    treatment,“ Nano Letter, 1(9), 487 - 489 (2001).
    Zhang, D., Shi, L., Fang, J., Li, X., and Dai, K., ” Preparation and modification
    of carbon nanotubes,” Materials Letters, 59, 4044 - 4047 (2005).
    Zoltán, N., Christel, D., Ákos, K., Duncan, A., László, F., Jin, W. S., and Klara,
    H., “Preparation of homogeneous titania coating on the surface of
    MWCNT”, Composites Science and Technology, 71 , 87 - 94 (2011).
    化工產業技術知識網: http://www.chemtech.com.tw
    申昌生化科技 CBT Nano-scale Supplier carbon nanotube
    成會明,「奈米碳管」,五南圖書出版社,2004
    吳怡貞,「利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究」,
    碩士論文,國立中山大學環境工程研究所,高雄,2007。
    李元堯,「21 世紀的尖端材料-奈米碳管」,化工技術,第 11 卷第 2 期,
    第 140-159 頁,2003。
    杜玉琴,「鄰苯二甲酸酯類和腐植酸在多壁奈米碳管上的吸附」,碩士論
    文,國立中央大學環境工程研究所,中壢,2011。
    周貝倫,「純化程序對奈米碳管表面特性影響之研究」,碩士論文,國立
    中央大學環境工程研究所,中壢,2006。
    洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷
    第 1 期,第 23-30 頁,2002。
    高濂、鄭珊、張青紅,奈米光觸媒,五南圖書出版公司,(2004)。
    曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,
    博士論文,國立成功大學化學工程學系,臺南,2009。
    馮怡蓁,「含二氧化鈦中孔洞材料之製備、鑑定及催化應用」,碩士論文,
    國立中央大學化學研究所,臺南,2009。
    黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第 50卷
    第 2 期,第18-25頁,2003。
    維基百科: http://zh.wikipedia.org/

    QR CODE
    :::