| 研究生: |
涂勝富 Sheng-Fu Tu |
|---|---|
| 論文名稱: |
有機太陽能電池元件的優化探討 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 有機太陽能電池 、添加劑 |
| 外文關鍵詞: | Organic Photovoltaics, additive |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機太陽能電池(Organic Photovoltaics, OPV)因具有可撓曲性、重量輕且低成本等優點,而備受學術界與工業界矚目。增加OPV光電轉換效率的方法之一是在活性層材料溶液中加入添加劑,或使用第三種有機固體材料製備活性層來增加元件的光電轉換效率。本論文利用本實驗室所合成的兩系列化合物(小分子與高分子)作為OPV的P-型材料或固體有機添加劑來組裝元件,尋找最佳元件組裝條件。在以二酮吡咯並吡咯結構為主的小分子SM系列中,SM2/PC61BM混合的活性層分別加入1,8-diiodooctane (DIO)與1-chloronaphthalene (1-CN)添加劑,所組裝之反式元件光電轉換效率可達0.71%及0.29%。以SM2:P3HT:PC61BM(重量比0.1:0.9:1)的三元組成為活性層之電池的光電轉換效率可達到3.30%。以苯並二噻吩結構為主體的高分子(P8、P10、P11),在P8/PC61BM及P11/PC61BM活性層中加入1 vol%的 DIO添加劑與在P10/PC61BM加入7 vol% 1-CN添加劑,所組裝之反式元件光電轉換效率最高分別可達1.85% (P8)、1.10% (P10)、3.48% (P11)。此外,不管是小分子或高分子材料,最佳轉速約在1000 rpm附近,小分子與高分子所製作之活性層熱退火條件顯著不同,而最佳P/N型材料混合比例與活性層起始溶液濃度則無規則可循。有趣的是以DIO作為添加劑時,最佳濃度為1 vol%但最佳1-CN添加劑濃度則隨化合物不同而有異。
Organic Photovoltaics (OPVs) have been attracted lots of attention because of the flexibility, lightweight and low fabrication cost. There are two main approaches used to improve the power conversion efficiency (PCE) of OPVs: adding additive in the active layers or adding third component in the active layer to fabricate ternary solar cell.In this thesis, the two series of compounds (small molecules and polymers), which were synthesized in our group, were used in OPVs as the donor or additive. For the diketopyrrolopyrrole based small molecule (SM), the highest PCE of the inverted SM2:PCBM based photovltaics with an additive of the 1,8-diiocooctane (1-chloronaphathalene) was 0.71% (0.29%). In the SM2:P3HT:PCBM (0.1:0.9:1 wt%) based ternary solar cells, a moderate PCE of 3.30% can be achieved. For the benzodithiophene based polymers (P8, P10, P11), the optimal PCE of the inverted P11/PC61BM based solar cells is 3.48%. The PCE of the P11/PC61BM based solar cells is 3.48% when the 1,8-diiocooctane (1 vol%) is added as the additive.There is a universal spin rate (~ 1000 rpm) for the fabrications of the active layer for SM molecules and polymers. The optimal thermal annealing conditions for the active layer based on SM molecules and polymers are not tha same. There is no a rule that can be obeyed to find out the optimized donor/acceptor ratio and concentration of the active layers. It is notice that the optimal PCE of the all solar cells can be achieved when the 1,8-diiocooctane (1 vol%) is used as the additive but no optimal concentration for the 1-chloronaphathalene additive.
[1] 世界各國每年用電量統計資料。2016年10月11日,取自:The U.S. Energy Information Administration Website, http://www.eia.gov/beta/international/
[2] Kearns, D.; Calvin, M., “Photovoltaic Effect and Photo-conductivity in Laminated Organic Systems”, J. Chem. Phys., 1958, 29, 950-951.
[3] Onsager, L., “Initial Recombination of Ions”, Phys. Rev., 1938, 54, 554-557.
[4] Tang, C. W., “Two-layer organic photovoltaic cell”, Appl. Phys. Lett.,1986, 48, 183-185.
[5] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., “Photoinduced Electron Transfer from a Conducting Polymer to Buckminster-fullerene”, Science, 1992,258,1474-1476.
[6] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., “Polymer Photo- voltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 1995, 270,1789-1791.
[7] Liu, Z. ; Tian, M. ; Wang N., “Influences of Alq3 as Electron Extraction Layer Instead of Ca on the Photo-stability of Organic Solar Cells”, J. of Power Sources, 2014, 250,105-109.
[8] Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M., “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1~233303-3.
[9] Xu, Z.; Chen, L. M.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C. S.; Yang, Y., “Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater., 2009, 19, 1227-1234.
[10] Yao, Y.; Hou, J.; Xu, Z.; Li, G.; Yang, Y., “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells”, Adv. Funct. Mater., 2008, 18, 1783-1789.
[11] Hau, S. K.; Yip, H. L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K.-Y., “Air-Stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer”, Appl. Phys. Lett., 2008, 92, 253301-1~253301-3.
[12] Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J., “High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett., 2008, 92, 043301-1~043301-3.
[13] Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci., 2010, 3, 867-883.
[14] Li, G.; Zhu, R.; Yang, Y., “Polymer Solar Cells”, Nature Photonics, 2012, 6, 153-161.
[15] Blaesser, G.; Rossi, E., “Extrapolation of Outdoor Measurements of PV Array I─V Characteristics to Standard Test Conditions”, Solar Cells, 1988, 25, 91-96.
[16] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., “Design Rules for Donors in Bulk-Hetero-junction Solar Cells─Towards 10% Energy-Conversion Efficiency”, Adv. Mater., 2006, 18, 789-794.
[17] Cheng, Y.; Yang, S.; Hsu, C., “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev., 2009, 109, 5868-5923.
[18] Peet, J.; Kim, J. Y.;Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nature Materials, 2007, 6, 497-500.
[19] Lee, J. W.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.;Heeger, A. J., “Processing Additives for Improved Efficiency from Bulk Hetero-junction Solar Cells”, J. Am. Chem. Soc., 2008, 130, 3619-3623.
[20] Woo, C. H.; Beaujuge, P. M.; Holcombe, T. W.; Lee, O. P.; Frechet, J. M. J., “Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cell”, J. Am. Chem. Soc., 2010, 132, 15547-15549.
[21] Koppe, M.; Egelhaaf, H.-J.; Dennler, G.; Scharber, M. C.; Brabec, C. J.; Schilinsky, P.; Hoth, C. N., “Near IR Sensitization of Organic Bulk Heterojunction Solar Cells: Towards Optimization of the Spectral Response of Organic Solar Cells”, Adv. Funct. Mater., 2010, 20, 338-346.
[22] Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z., “Conjugated Polymer−Small Molecule Alloy Leads to High Efficient Ternary Organic Solar Cells”, J. Am. Chem. Soc., 2015, 137, 8176-8183.
[23] Wu, J. S.; Cheng, S. W.; Cheng, Y. J.; Hsu, C. S. “Donor–Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells”, Chem. Soc. Rev. 2015, 44, 1113-1154.
[24] He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., “Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure”, Nature Photonics, 2012, 190, 591-595.
[25] Etxebarria, I.; Guerrero, A.; Albero, J.; Garcia-Belmonte, G.; Palomares, E.; Pacios, R., “Inverted vs Standard PTB7:PC70BM Organic Photovoltaic Devices. The Benefit of Highly Selective and Extracting Contacts in Device Performance”, Organic Electronics, 2014, 15, 2756-2762.
[26] Liao, H. C.; Ho, C. C.; Chang, C. Y.; Jao, M. H.;, Darling, S. B.; Su, W. F., “Additives for Morphology Control in High-Efficiency Organic Solar Cells”, Materials Today, 2013, 16, 326-336.
[27] Huang, Y.; Kramer, E. J.; Heeger, A. J.; Bazan, G. C., “Bulk Heterojunction Solar Cells: Morphology and Performance Relationships”, Chem. Rev., 2014, 114, 7006-7043.
[28] Zhang, S.; Ye, L.; Zhao, W.; Yang, B.; Wang, Q.; Hou, J., “Realizing Over 10% Efficiency in Polymer Solar Cell by Device Optimization”, Sci. China Chem., 2015, 58, 248-256.
[29] Wu, Y. Q.; Chen, H. C.; Yang, Y. S.; Chang, S. H.; Wu, P. J.; Chu, Y. Y.; Wu, C.-G., “Comprehensive Study of Pyrido[3,4-b]pyrazine-Based D––a Copolymer for Efficient Polymer Solar Cells”, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 1822-1833.