跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡坤明
Kun-Ming Cai
論文名稱: 單電解質水溶液離子活性係數之探討
指導教授: 李亮三
Liang-Sun Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 75
中文關鍵詞: 離子選擇電極活性係數電解質
外文關鍵詞: activity coefficient, electrolytes
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於探討 KCl 、NaCl 、KBr、 NaBr 、CaCl2單價電解質的活性係數,比較其在不同濃度、溫度、及其相對離子的環境下,其活性係數的差異,從而討論其代表的物理意義及現象。
    論文中提出四種計算平均活性係數的方法,並比較其優缺點,而本實驗是使用離子選擇電極來量測電動勢、利用無因次電位法來計算其單離子活性係數,再推算平均活性係數,並與文獻值做比較。
    實驗結果顯示,在單電解質水溶液中,陽離子的活性係數,與陰離子的活性係數不同。這由於離子間、及離子與溶劑間的交互作用力。而離子的活性係數,也與相反離子的性質有關。我們可以發現在NaCl、KCl、LiCl、CsCl水溶液中Na+、K+、Li+、Cs+的個別活性係數數據,相同濃度下其大小排列依次為Li+>Na+> K+> Cs+,此外,我們由Robinson and Stoke所提出的水合數大小亦為Li+>Na+> K+> Cs+。又1970 年Bate et.al及1999年Vera,他們所提出的水合理論得知, ,h為水合數,由這樣的結果得知水合數愈大,活性係數愈大,水合數的物理意義代表離子與水分子的作用力,因此當離子與水分子作用力愈大,則表示離子的活性係數愈大。在溫度效應下,固定濃度的單電解質水溶液其離子活性係數隨著系統溫度的升高而降低。
    最後,以修正型的Pitzer-Debye-Hückel 模式,來關聯整個實驗數據,獲得不錯的擬合結果。如:溫度在298.15K的KCl電解質水溶液中,個別離子活性係數關聯結果誤差百分率(error ﹪)值皆小於1.5﹪。


    目 錄 中文摘要 目錄 圖目錄 表目錄 符號說明 第一章緒論1 第二章文獻回顧3 2-1電解質溶液平均活性係數模式之回顧3 2-2電解質溶液個別離子活性係數相關文獻之回顧6 第三章理論說明9 3-1電解質溶液之熱力學基本性質9 3-1-1重量莫耳濃度與莫耳分率9 3-1-2離子強度9 3-1-3電解質平均活性係數9 3-2水合理論10 3-3活性係數之計算理論11 3-3-1溶劑活性法11 3-3-2離子選擇電極電位測量法    13 1電位與熱力學之關係13 2能士特方程式(Nernst Equation)14 3利用ISE測量的平均離子活性係數理論計算15 4利用ISE測量的單離子活性係數理論計算16 3-4 實驗數據處理19 第四章電解質溶液實驗21  前言21 4-1實驗裝置21 4-2實驗藥品21 4-3實驗設備21 4-4實驗步驟22 4-4-1電極的校正22 4-4-2單電解質溶液離子電位的量測22 第五章實驗結果與討論25 5-1電解質水溶液實驗結果25 5-2實驗數據之討論25 第六章結論與未來展望30 參考文獻31 圖36 表42 附錄A53 附錄B55

    1.Ana M. Soto-Campos, Mohammad K. Khoshkbarchi, Juan H. Activity Coefficients of the Electrolyte and the Amino Acid in Water+ NaNO3+Glycine and Water+NaCl + DL-Methionine System at 298.15 K Biophysical Chemistry 1997,67,97-105.
    2. Bates, R. G. Determination of pH Theory and Practice, 2nd ed., John Wiley, New York, 1965.
    3.Bates, R. G.; Staples, B. R.; Robinson, R. A. Ionic Hydration and Single Ion Activity in Unassociated Chlorides at High Ionic Strengths. Anal. Chem., 1970, 42, 867-871.
    4. Bates, R. G.; Dickson, A. G.; Determination of Mean Activity Coefficients with Ion-Selective Electrodes. American Chemical Society. 1983,55,175-180.
    5. Brömley, L. A. Approximate Individual Ion Values of (or B) in Extended Debye-Hückel Theory for Uni-univalent Aqueous Solutions at 298.15 K. J. Chem. Thermodynamics. 1972, 4, 669-673.
    6. Brömley, L. A. Thermodynamic Properties of Strong Electrolytes in Aqueous Solution. AIChE J. 1973, 19, 313-320.
    7. Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B. Extension and Application of the Pitzer Equation for Vapor-Liquid Equilibrium of Aqueous Electrolyte Systems with Molecular Solutes. AIChE J. 1979, 25, 820-830.
    8. Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B. Local Composition Model for Excess Gibbs Energy of Electrolytes Systems. AIChE J. 1982, 28, 588-595.
    9.Chen, C. C.; Evans, L. B. A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems. AIChE J. 1986, 32, 444-454.
    10.Cruz, J. L.; Renon, H. A New Thermodynamic Representation of Binary Electrolyte Solutions Nonideality in the Whole Range of Concentrations. AIChE J. 1978, 24, 817-829.
    11.Ghosh, S.; Patwardhan, V. S. Aqueous Solutions of Single Electrolytes: A Correlation Based on Ionic Hydration. Chem. Eng. Sci. 1990, 45, 79-87.
    12. Guggenheim, E. A. The Conception of Electrical Potential Difference Between Two Phase and the Individual Activities of Ions. J. Phys. Chem. 1929, 31, 842-854.
    13. Guggenheim, E. A.; Stokes, R. H. Equilibrium Properties of Aqueous Solution of Single Strong Electrolytes. Pergamon Press, Oxford, 1969.
    14. Haghtalab, A.; Vera, J. H. Nonrandom Factor Model for the Excess Gibbs Energy of Electrolyte Solutions. AIChE J. 1988, 34, 803-813.
    15. Haghtalab, A.; Vera, J. H. Mean Activity Coefficients in the Ternary NaCl-NaNO3 —H2O and NaBr-NaNO3 —H2O Systems at 298.15K. J. Chem. Eng. Data 1991,36,332-340.
    16. Haghtalab, A.; Vera, J. H. Nonrandom Factor Model for Electrolyte Solutions. AIChE J. 1991, 37, 147-158.
    17. Hamid R. Rabie, Grazyna Wilczek-Vera, and Juan H. Activities of Individual Ions from Infinite Dilution to Saturated Solutions. J. of Solution Chemistry. 1999, 28, 885-913.
    18. Khoshkbarchi, M. K.; Vera, J. H. Measurement and Correlation of Ion Activity in Aqueous Single Electrolyte Solutions. AIChE J. 1996, 42, 249-258.
    19. Khoshkbarchi, M. K.; Vera, J. H. Measurement and Correlation of Ion Activity Coefficients in Aqueous Solutions of mixed Electrolyte with a Common Ion. Fluid Phase Equilibria. 1996, 121, 253-265.
    20. Kolker, A.; Pablo, de; J. J. Thermodynamic Modeling of Concentrated Aqueous Electrolyte and Nonelectrolyte Solutions. AIChE J. 1995, 41, 1563-1571.
    21. Komar, N. P.; Kaftanov, A. Z. Estimation of the Activity Coefficient of Chloride Ions in Potassium Chloride Solution. Russ. J. Phys. Chem. 1974, 48, 246-255.
    22. Lin, C. L.; Lee, L. S.; Tseng, H. C. Thermodynamic behavior of Electrolyte Solutions : Part Ⅰ. Activity Coefficients and Osmotic Coefficients of Binary Systems. Fluid Phase Equilibria. 1993, 90, 57-79.
    23. Lin, C. L.; Lee, L. S.; Tseng, H. C. Thermodynamic behavior of Electrolyte Solutions : Part Ⅱ. Prediction of Vapor-Liquid Equilibria for Mixed-Solvent Electrolyte Systems. Fluid Phase Equilibria. 1993, 90, 81-98.
    24.Lin,C.L.;Lee,L.S.; Tseng, H. C. A Three-Characteristic-Parameter correlation model for Strong Electrolyte Solutions. Fluid Phase Equilibria. 1998, 152, 169-185.
    25. MacInnes, D. A. The Principals of Electrochemistry. Dover, New York, 1961.
    26.Maria del Mar Marcos-Arroyo; Khoshkbarchi, M. K.; Vera, J. H. Activity Coefficients of Sodium, Potassium, and Nitrate Ions in Aqueous Solutions of NaNO3, KNO3, and NaNO3 + KNO3 at 25℃. J. Solution Chem. 1996, 25, 983-1000.
    27. Meissner, H. P.; Tester, J. W. Activity Coefficients of Strong Electrolytes in Aqueous Solutions. Ind. Eng. Chem. Proc. Des. Dev. 1972, 11, 128-133.
    28. Meissner, H. P.; Kusik, C. L.; Tester, J. W. Activity Coefficients of Strong Electrolytes in Aqueous Solution --- Effect of Temperature. AIChE J. 1972, 18, 661-662.
    29. Mokhov, V. M.; Bagdasarova, I. P.; Kekeliya, A. G.; Lavrelashvilig, L. V. Individual Activity Coefficients in Sodium Chloride Solutions at Different Temperature. Russ. J. Phys. Chem. 1977, 51, 1406-1414.
    30. Pitzer, K. S. Thermodynamics of Electrolytes. Ⅰ. Theoretical Basis and General Equations. J. Phys. Chem. 1973, 77, 268-277.
    31. Pitzer, K. S.; Mayorga, G. Thermodynamics of Electrolytes. Ⅱ. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent. J. Phys. Chem. 1973, 77, 2300-2307.
    32. Pitzer, K. S. Electrolytes From Dilute Solutions to Fused Salts. J. Amer. Chem. Soc. 1980, 102, 2902-2906.
    33. Pitzer, K. S.; Peiper, J. C.; Busey, R. H. Thermodynamic Properties of Aqueous Sodium Chloride Solutions. J. Phys. Ref. Data, 13, 1, 1984.
    34. Robinson, R. A.; Stokes, R. H. Electrolyte Solutions. 2nd ed., Academic Press, New York, 1959.
    35. Shatkay, A.; Lerman, A. Individual Activities of Sodium and Chloride in Aqueous Solutions of Sodium Chloride. Anal. Chem. 1969, 41, 514-517.
    36. Skoog, D. A.; Leary, J. J. Principles of Instrumental Analysis. Saunders, New York, 1992.
    37. Stokes, R. H.; Robinson, R. A. Ionic Hydration and Activity in Electrolyte Solutions, " J. Am. Chem. Soc., 70, 1870 (1948).
    38. Taghikhani, V.; Modarress, H.; Vera, J. H. Individual Anionic Activity in Aqueous Electrolyte Solutions of LiCl and LiBr. Fluid Phase Equilibria. 1999, 166, 67-77.
    39. Taghikhani, V.; Modarress, H.; Vera, J. H. Measurement and Correlation of the Individual Ionic Activity Coefficients of Aqueous Electrolyte Solutions of KF, NaF and KBr. The Canadian Journal of Chemical Engineering. 2000,78,175-181.
    40. 田福助, 吳溪煌, 電化學---理論與應用---, 高立圖書有限公司, 臺北, 1993.
    41. 陳贊名,單電解質水溶液活性係數與溫度之關係,國立中央大學碩士論文, 2000.

    QR CODE
    :::