| 研究生: |
董長璁 Chang Tsung |
|---|---|
| 論文名稱: |
以懸浮聚合法製備相轉移微膠囊 Preparation of microencapsulated phase change materials by suspension polymerization |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 微膠囊 、相轉移材料 、正十八烷 、懸浮聚合法 |
| 外文關鍵詞: | suspension polyme, n-octadecane, encapsulation, PCM |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用懸浮聚合法以單一單體搭配交聯劑或兩單體搭配交聯劑為殼物質製備相轉移微膠囊,核物質選用有機類相轉移材料正十八烷,殼物質共使用四種單體為苯乙烯(St)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BMA)以及苯甲基丙烯酸酯(BzMA),將上述四單體分別搭配交聯劑或兩種單體混合搭配交聯劑製備相轉移微膠囊,合成出之微膠囊再以低溫微差掃描熱分析儀(DSC)與掃描式電子顯微鏡(SEM)針對單一單體搭配交聯劑或兩單體搭配交聯劑所製備之微膠囊的潛熱值、產率、包覆效率以及外觀做探討。
本實驗先將單體、起始劑(AIBN)、交聯劑(EGDMA)與正十八烷混合均勻後倒入含有PVA穩定劑(BP-24)的去離子水溶液中,經由乳化均質機攪拌分散後再行聚合反應。結果顯示,使用單一單體製備微膠囊時,最佳製備條件為使用St為單體且相轉移材料用量為60wt%、起始劑濃度為1wt%並添加甲苯做為溶劑,在該條件下可製備出潛熱值為169.1 J/g,包覆效率133.4×102 J/g‧%之相轉移微膠囊;而在兩單體製備微膠囊時,其最佳製備條件為使用St與BzMA各佔50wt%之單體組成且相轉移材料用量60wt%、起始劑濃度為1wt%並添加甲苯做為溶劑,而在該條件下可成功製備出潛熱值163.0 J/g,包覆效率133.2×102 J/g‧%之相轉移微膠囊。
In this study, the n-octadecane phase change materials microcapsules (microPCMs) were prepared by suspension polymerization by using one monomer or two monomers plus crosslinking agent as shell materials. Styrene(St), Methyl methacrylate(MMA), Butyl methacrylate(BMA), Benzyl methacrylate (BzMA) were used as monomers, respectively. Azobisisobutyronitrile(AIBN), Ethylene Glycol Dimethacrylate(EGDMA) and polyvinyl alcohol were used as initiator, crosslinking agent and stabilizer, respectively. The thermal properties and surface morphology of microcapsules were measured by differential scanning calorimetry (DSC), scanning electron microscope (SEM), thermo gravimetric analysis (TGA).
In the first experimental part, the monomers, AIBN, and EGDMA were mixed with n-octadecane, then poured into the deionized aqueous solution containing PVA stabilizer (BP-24). The suspension polymerization was occurred after the above solution homogenized by the emulsion homogenizer. The results showed that under optimal reaction conditions, the latent heat and encapsulation efficiency of microPCM prepared by using one monomer plus EGDMA as shell materials were 169.1 J/g and 133.4 ×102 J/g‧% .
In the second experimental part, two monomers plus EGDMA were used as shell material, the results showed that under optimal reaction conditions, the latent heat and encapsulation efficiency of microPCM were 163.0 J/g and 133.2 ×102 J/g‧% .
(1). Zalba B, Marin JM, Cabeza LF, Mehling H: Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 2003, 23(3):251-283.
(2). S. D. Sharma, K. Sagara: Latent Heat Storage Materials and Systems: A Review. International Journal of Green Energy 2005, 2:1–56.
(3). S. M. Hasnain, Review on sustainable thermal energy storage technologies, PartI: Heat storage materials and techniques. Energy Conversion and Management 1998, 39:1127–1138.
(4). D. V. Hale, M. J. Hoover, M. J. O’Neill, Phase Change Materials Hand Book, National Technical Information Service U.S. Department of Commerce, 1971.
(5). Mohammed M. Farid, Amar M. Khudhair, Siddique Ali K. Razack, Said Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Conversion and Management 2004, 45:1597–1615
(6). Sharma A, Tyagi VV, Chen CR, Buddhi D: Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009, 13(2):318-345.
(7). Ismail KAR, Henriquez JR: Thermally effective windows with moving phase change material curtains. Appl Therm Eng 2001, 1(18):1909-1923.
(8). Kuznik F, David D, Johannes K, Roux JJ: A review on phase change materials integrated in building walls. Renew Sust Energ Rev 2011,15(1):379-391.
(9). Lin KP, Zhang YP, Di HF, Yang R: Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage. Energ Convers Manage 2007, 48(7):2016-2024.
(10). Benli H, Durmus A: Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol Energy 2009, 83(12):2109-2119.
(11). Raj VAA, Velraj R: Review on free cooling of buildings using phase change materials. Renew Sust Energ Rev 2010, 14(9):2819-2829.
(12). Saman W, Bruno F, Halawa E: Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 2005, 78(2):341-349.
(13). Chen C, Guo HF, Liu YN, Yue HL, Wang CD: A new kind of phase change material (PCM) for energy-storing wallboard. Energ Buildings 2008, 40(5):882-890.
(14). Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T: Development of phase change materials based microencapsulated technology for buildings: A review. Renew Sust Energ Rev 2011, 15(2):1373-1391.
(15). Zhang YP, Zhou GB, Lin KP, Zhang QL, Di HF: Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build Environ 2007, 42(6):2197-2209.
(16). Nuckols ML: Analytical modeling of a diver dry suit enhanced with micro-encapsulated phase change materials. Ocean Eng 1999, 26(6):547-564.
(17). Lane GA: In: Proceedings of 2nd Southeastern Conference on. Application of Solar Energy 1976, 442-450
(18). Stark P: PCM-impregnated polymer microcomposites for thermal energy storage. SAE (Soc Automotive Eng). Trans 1990,99:571–88.
(19). Fan YF, Zhang XX, Wang XC, Li J, Zhu QB: Super-cooling prevention of microencapsulated phase change material. Thermochim Acta 2004, 413(1-2):1-6.
(20). Fan YF, Zhang XX, Wu SZ, Wang XC: Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochim Acta 2005, 429(1):25-29.
(21). Zhang XX, Fan YF, Tao XM, Yick KL: Crystallization and prevention of supercooling of microencapsulated n-alkanes. J Colloid Interf Sci 2005, 281(2):299-306.
(22). Li W, Zhang XX, Wang XC, Niu JJ: Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Mater Chem Phys 2007, 106(2-3):437-442.
(23). Fang GY, Li H, Yang F, Liu X, Wu SM: Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J 2009, 153(1-3):217-221.
(24). Palanikkumaran M, Gupta KK, Agrawal AK, Jassal M: Highly Stable Hexamethylolmelamine Microcapsules Containing n-Octadecane Prepared by In Situ Encapsulation. J Appl Polym Sci 2009, 114(5):2997-3002.
(25). Salaun F, Devaux E, Bourbigot S, Rumeau P: Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization. Chem Eng J 2009, 155(1-2):457-465.
(26). Zhang HZ, Wang XD: Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell. Colloid Surface A 2009, 332(2-3):129-138.
(27). Baek KH, Lee JY, Kim JH: Core/Shell structured PCM nanocapsules obtained by resin fortified emulsion process. J Disper Sci Technol 2007, 28(7):1059-1065.
(28). Alkan C, Sari A, Karaipekli A, Uzun O: Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energ Mat Sol C 2009, 93(1):143-147.
(29). Sari A, Alkan C, Karaipekli A, Uzun O: Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy 2009, 83(10):1757-1763.
(30). Shan XL, Wang JP, Zhang XX, Wang XC: Formaldehyde-free and thermal resistant microcapsules containing n-octadecane. Thermochim Acta 2009, 494(1-2):104-109.
(31). Ma SD, Song GL, Li W, Fan PF, Tang GY: UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Sol Energ Mat Sol C 2010, 94(10):1643-1647.
(32). Sari A, Alkan C, Karaipekli A: Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage. Appl Energ 2010, 87(5) 1529-1534.
(33). Alkan C, Sari A, Karaipekli A: Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energ Convers Manage 2011, 52(1):687-692.
(34). Sanchez-Silva L, Rodriguez JF, Romero A, Borreguero AM, Carmona M, Sanchez P: Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem Eng J 2010, 157(1):216-222.
(35). Li W, Song GL, Tang GY, Chu XD, Ma SD, Liu CF: Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy 2011, 36(2):785-791.
(36). Sanchez-Silva L, Rodriguez JF, Carmona M, Romero A, Sanchez P: Thermal and morphological stability of polystyrene microcapsules containing phase-change materials. J Appl Polym Sci 2011, 120(1):291-297.
(37). Sanchez L, Sanchez P, de Lucas A, Carmona M, Rodriguez JF: Micro encapsulation of PCMs with a polystyrene shell. Colloid Polym Sci 2007, 285(12):1377-1385.
(38). Sanchez L, Sanchez P, Carmona M, de Lucas A, Rodriguez JF: Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization. Colloid Polym Sci 2008, 286(8-9) 1019-1027.
(39). Luz Sanchez-Silva, Juan F. Rodriguez, Paula Sanchez: Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules. Colloids and Surfaces A: Physicochem. Eng. Aspects 390 (2011) 62–66.
(40). Xiaolin Qiu, Wei Li, Guolin Song, Xiaodong Chu, Guoyi Tang: Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate- based polymer shells. Solar Energy Materials & Solar Cells 98 (2012) 283–293.
(41). Su JF, Wang LX, Ren L, Huang Z, Meng XW: Preparation and characterization of polyurethane microcapsules containing n-octadecane with styrene-maleic anhydride as a surfactant by interfacial polycondensation. J Appl Polym Sci 2006, 102(5):4996-5006.
(42). Su JF, Wang LX, Ren L: Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloid Surface A 2007, 299(1-3):268-275.
(43). Gao GB, Qian CX, Gao MJ: Preparation and characterization of hexadecane microcapsule with polyurea-melamine formaldehyde resin shell materials. Chinese Chem Lett 2010, 21(5):533-537.
(44). Fang YT, Kuang SY, Gao XN, Mang ZG: Preparation and characterization of novel nanoencapsulated phase change materials. Energ Convers Manage 2008, 49(12):3704-3707.
(45). Zhong-Hua Chen, Fei Yu, Xing-Rong Zeng, Zheng-Guo Zhang: Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Applied Energy 91 (2012) 7–12.
(46). Bayes-Garcia L, Ventola L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA: Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Sol Energ Mat Sol C 2010, 94(7):1235-1240.
(47). Fang GY, Li H, Liu X, Wu SM: Experimental Investigation of Performances of Microcapsule Phase Change Material for Thermal Energy Storage. Chem Eng Technol 2010, 33(2):227-230.
(48). Jin Y, Lee WP, Musina Z, Ding YL: A one-step method for producing microencapsulated phase change materials. Particuology 2010, 8(6):588-590.
(49). Zhang HZ, Wang XD, Wu DZ: Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interf Sci 2010, 343(1):246-255.
(50). Taguchi Y, Yokoyama H, Kado H, Tanaka M: Preparation of PCM microcapsules by using oil absorbable polymer particles. Colloid Surface A 2007, 301(1-3):41-47.
(51). Huanzhi Zhang, Shuangyue Sun, Xiaodong Wang, Dezhen Wu: Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011, 389:104–117.
(52). 黃士芳,「以正十八烷製備相轉移微膠囊」,國立中央大學化學工程與材料工程學系碩士論文(2011)。