跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂明怡
Ming-I Lu
論文名稱: 共軛高分子及共軛高分子/金屬氧化物奈米複合材料之電變色特性的探討
The Electrochromic Properties of Conjugated Polymers and Their Metal Oxide Nanocomposites
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 97
語文別: 中文
論文頁數: 192
中文關鍵詞: 共軛高分子電變色材料
外文關鍵詞: electrochromic material, conjugated polymer
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電變色元件因可應用於聰明窗戶、防眩光後視鏡、及顯示器等而受到矚目,傳統電變色材料皆以無機物為主,雖然無機材料具有較高的環境及電化學穩定性,但加工不易,顏色變化不多,而有機電變色材料具有較好的溶劑加工性、撓曲性、低能量損耗及短應答時間等優點而受到重視。本研究中以4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]dithiophene (DOCPDT) 為主架構, 將DOCPDT iazthiole (PS)、Octylthiophene (OT)、carbazol (Cz)進行對接,合成出有機可溶的PDOCPDT衍生共聚物,包含紅色的PDOCPDT-OT (Poly[4,4-dioctyl-cyclopentadithiophene-alt-3-octyl- thiophene])和DOCPDT-DOT (Poly[4,4-dioctyl-cyclopentadithiophene-alt-bis-2,5-(3-octylthiophene)
    、綠色的PDOCPDT-PS (Poly [4,4-dioctylCyclopenta-di-thiophene-alt-4,7-(piazthiole)])和藍色的PDOCPDT (Poly[4,4-Dioctylcyclopenta[2,1-b; 3,4-b’]-dithiophene]) 三原色之陰極著色材料及淡黃色的PDOCPDT-Cz (Poly-[4,4-dioctyl-Cyclopentadithiophene-alt-4,7-(piazthiole)])陽極著色材料,這些有機可溶共聚物具有低的驅動電位、快的應答時間、良好的電化學和環境穩定性及高的著色效率等特性。另外,為增加材料的效能本研究利用在PDOCPDT中,加入無機奈米粒子合成奈米複合材料,藉由材料的複合來擷取兩者的優點,當PDOCPDT加入有機可溶之TiO2後,可明顯的增加高分子的著色及去著效率,在此TiO2扮演著類似分散劑及電荷暫存區的角色。最後將所合成之陰極著色高分子搭配V2O5離子儲存層、或高分子陽極著色材料組裝成電變色元件,這些
    元件皆具有低的驅動電位,而兩極皆為高分子材料的元件之著色及去著色效率皆會高於使用V2O5離子儲存層做為陽極的元件,以PDOCPDT/ PDOCPDT-Cz元件具有最高的光學對比與光學密度及最快的應答時間。


    Electrochromic materials will change their optical properties (color or transmittance) upon applying dc voltages. Electrochromic devices have been developed for the application as smart windows and anti-glare rear view mirrors, due to their various merits such as multicolor, high contrast, optical memory, and no visual dependence on viewing angle. In this proposal, we synthesize a series of new soluble electrochromic copolymers containing 4,4-Dioctylcyclopenta[2,1-b; 3,4-b’]dithiophene (DOCPDT) unit. Including Red colored Poly[4,4-dioctyl-cyclopentadithiophene-alt-3-octyl-thiophene] (PDOCPDT-OT)
    and Poly [4,4-dioctyl-Cyclopentadithiophene-alt-bis-2,5-(3-octyl-thiophene)] (PDOCPDT-DOT)、Green colored Poly [4,4-dioctylCyclopentadithiophene-alt-4,7-(piazthiole)] (PDOCPDT-PS) and Blue colored Poly[4,4-Dioctylcyclopenta[
    2,1-b;3,4-b’]dithiophene] (PDOCPDT) as cathodic electrochromic materials and pale-yellow colored Poly [4,4-dioctyl- Cyclopentadithiophene-alt-4,7-(piazthiole)] (PDOCPDT-Cz) as an anodic electrochromic material. All
    polymers have low operation voltage, fast response time, good chemical and environmental stability as well as high optical contrast and coloration efficiency.Furthermore, in order to enhance the electrochromic performances of polymer,TiO2 nano-wires were added into PDOCPDT to form inorganic/polymer nano-hybrid material. The coloration efficiency of the nanocomposite increased significantly without sacrifying other properties. The function of the nanowire is to disperse the aggregated polymer chains, it may be the temporary electron storage centers, electrons can be transferred reversibly between PDOCPDT and
    TiO2 nano-wires. Finally, the electrochromic devices based on these new polymers/copolymers were fabricated by using cathodic polymer combines with anodic polymer or V2O5 ion storage anode. All devices have a low operation voltage and dual polymer (PDOCPDT/ PDOCPDT-Cz) device has the highest optical contrast of 50% and the shortest response time of 0.5 second.

    目 錄 中文摘要……………………………………….................. I 英文摘要……………………………………….................. II 謝誌................................................... III 目錄…………………………………………….................. IV 圖目錄………………………………………………............. VII 表目錄..………………………………………………........... XI 第一章 緒論………………………………….................. 1 1-1 前言……………………………………..................... 1 1-2 電變色材料的基本特性…………………………............. 1 1-3 電致色變材料……………………………………………....... 4 1-4 控制變色分子顏色的方法………………………………......12 1-5 提升電變色特性的方法…………………………………......16 1-6 研究目的…………………………………………………..... 21 第二章 實驗部分……………………………………………...... 23 2-1 研究範圍及架構…………………………………………..... 23 2-2 實驗藥品…………………………………………........... 25 2-3 PDOPCDT 共軛高分子衍生物合成之實驗流程圖……....... 29 2-3-1 4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]dithiophene(DOCPDT)之合成……..................................... 29 2-3-2 Poly(4H-Cyclopenta[2,1-b;3,4-b'']dithiophene) (PDOCPDT-OP)之合成……………………….................... 29 2-3-3 以Stille coupling 的方式合成Poly[4,4-dioctyl-Cyclo-pentadithiophenealt-3-octyl-thiophene] (PDOCPDT-OT-S), oly[4,4-dioctyl-Cyclopenta-di-thiophene-alt-4,7-(piazthiole)] (PDOCPDT-PS), Poly[4,4-dioctyl-Cyclo-pentadithiophene-alt-3,6-(9H-carbazol)(PDOCPDT-Cz) 及Poly[4,4-dioctyl-Cyclopenta-di-thiophene-alt-3,6-(9-metyl-9H-carbazol)] (PDOCPDT -N-MeCz-S)共聚物之合成路徑.................... 30 2-3-4 以oxidation polymerization 合成poly[4,4-dioctyl-cyclopentadithiophene-alt-bis(3-octyl-thiophene)] (PDOCPDT-DOT-OP)及以Yamamoto coupling reaction 合成poly[4,4-dioctyl-cyclopentadithiophene-alt- bis(3-octyl-thiophene)] (PDOCPDT-DOT-Y)之合成路徑…………....................... 31 2-4 中間產物及目標產物之結構命名及簡稱………………...... 32 2-5 Poly(4H-Cyclopenta[2,1-b;3,4-b'']dithiophene)s 之合成步驟……...... ............................................35 2-6 有機可溶之奈米金屬氧化物及金屬的製備…………….......49 2-7 複合物的製備……………………………………………...... 51 2-8 離子儲存層及陽極著色電極的製備……………………...... 52 2-9 電變色元件的組裝………………………………………...... 54 2-10 使用儀器及樣品的製備………………………………....... 54 第三章 結果與討論……………………………………………..... 63 3-1 Poly(cyclopenta-dithiophene) (PCPDT)衍生物的電變色分析…….................................................. 63 3-2 Poly(4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]dithiophene) (PDOCPDT)衍生共聚物的合成與電變色性質探討…............. 79 3-2-1 Poly[4,4-dioctyl-Cyclopentadithiophene)-alt-4,7-(piazthiole)](PDOCPDT-PS)之電變色特性………............. 79 3-2-2 Poly[4,4-dioctyl-Cyclopentadithiophene)-alt-3,6-(9H-carbazol)](PDOCPDT-Cz)之電變色特性………................ 91 3-2-3 Poly(4,4-dioctyl-cyclopentadithiophene-alt-3-octyl-thiophene)(PDOCPDT-OT)之電變色特性…………............. 100 3-2-4 Poly(4,4-Dioctyl-cyclopenta[2,1-b;3,4-b’]di- thiophene)(PDOCPDT)衍生物之電變色特性總整理............ 107 3-2-5 不同合成途徑之PDOCPDT-OT 系列的電變色特性和物性的探討 .....................................................109 3-3 PDOCPDT/有機可溶之金屬氧化物之電變色分析……....... 122 3-3-1 有機可溶之奈米無機物及高分子複合膜特性鑑定…......122 3-3-2 PDOCPDT/有機可溶之TiO2複合材料之電化學及光學特性..126 3-3-3 有機可溶之TiO2 在高分子複合膜中的功能………...... 134 3-4 共軛高分子電變色元件的特性分析……………………..... 138 3-4-1 V2O5 離子儲存層的特性……………………………...... 138 3-4-2 PDOCPDT/V2O5元件之電變色特性…………………....... 141 3-4-3 PDOCPDT/PDOCPDT-Cz 元件之電變色特性………........ 143 3-4-4 PDOCPDT/PDOCPDT-DOT 元件之電變色特性……......... 148 3-4-5 PDOCPDT-DOT/V2O5 元件之電變色特性…………........ 152 3-4-6 PDOCPDT-DOT/PDOCPDT-Cz 元件之電變色特性.......... 156 3-4-7 PDOCPDT-PS/PDOCPDT-Cz 元件之電變色特性…......... 160 3-4-8 PDOCPDT 衍生物/PDOCPDT-Cz 元件之電變色特性總比較. 165 第四章 結論…………….................................. 167 參考文獻............................................... 172 附 錄.................................................. 178

    參考文獻
    1. Habib, M. A. Electrochem. Transition 1992, 51.
    2. Somani, P. R.; Radhakrishnan, S. Materials Chemistry and Physics 2002, 77, 117–133.
    3. Habib, M. A.; Glueck, D. Solar Energy Mater. and Solar Cells 1989, 18, 127.
    4. Granqvist, C. G.; Avendano, E.; Azens, A. Thin Solid Films 2003, 442, 201.
    5. Pflunger, P.; Kunzi, H.; Guntherodt, H. Appl. Phys. Lett. 1979, 35, 771.
    6. Nagai, J. Solar Energy Mater. and Solar Cells 1993, 31, 291.
    7. Gottesfeld, S. J. Electrochem. Soc. 1980, 127, 272.
    8. Boufker, K. J. Appl. Electrochem. 1995, 25, 797.
    9. Ohtasuka, T.; Masuda, M.; Sato, N. J. Electrochem. Soc. 1987, 134, 2406.
    10. Itaya, K.; Shibayama, K.; Akahshi, H.; Toshima, S. J. Appl. Phys. 1982, 53, 804.
    11. Deford, D. D.; Davidson, A. W. J. Am. Chem. Soc. 1951, 73, 1469.
    12. Gao, Z.; Wang, G.; Li P.; Zhao, Z. Electrochim. Acta 1991, 36, 147.
    13. Kulesza, K. J.; Faszynska, M. J. Electroanal. Chem. 1988, 252, 461.
    14. Pole, R. V.; Sincerbox, G. T.; Shattuck, M. D. Appl. Phys. Lett. 1976, 28, 494.
    15. Yang, S. C. “Conducting Polymer as Electrochromic Material: Polyaniline,” in Large-area Chromogenics: Materials and Devices for Transmittance Control, Lampert, C. M.; Granqvist, C. G. Editors, Vol. IS4, p.335-365, SPIE Opt. Engr. Press, Bellingham, 1990.
    16. 楊明長, “電致色變系統簡介,” 化工, 第40 卷第2 期, p.64, 1993.
    17. 何國川, “電化學與無窗簾時代,” 化工, 第37 卷第3 期, p.32, 1990.
    18. (a) Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Nano Letters 2004, 4, 1231-1235.
    19. Letherby, H. J. Chem. Soc. 1862, 15, 16
    20. Angeli, A. Gazz. Chim. Ital. 1916, 46, Ⅱ279
    21. Olio, A. D.; Dascola, G.; Varacca, V.; Bocchi, V. Acad. Sci. Ser. 1986, 433, C267.
    22. (a)蕭如娟, 科儀新知, 1 9 8 8 , 9, 6, 65 (b)曾志正, 儲三洋, 科學月刊, 1 9 8 9 , 第二十卷, 第一期, 44
    23. Tourillon, G.; Garnier, F. J. Electrochem. Soc. 1983, 130, 2042-2044.
    24. Jen, K. Y.; Oboodi R.; Elsenbaumer R. L. Polym. Mater. Sci. Eng. 1985, 53, 79.
    25. Leclerc, M. Chem. Mater. 1997, 9, 2902-2905.
    26. (a) Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N. Nature 1992, 357, 477. (b) Yoshio, K.; Manda, Y.; Takahashi, H.; Nishioka, Y.; Kawai, T.; Ohmori, M. J. Apply. Phys. 1990, 68, 5976.
    27. Lowe, J.; Holdcroft, S. Macromolecules 1995, 28, 4608.
    28. (a) Ohtani, A.; Abe, M.; Huguchi, H. J. Chem. Soc. Chem. Commum. 1988, 1545. (b) Caia, J.; Kaner, R. B.; MacDiarmid, A.G. J. Electrochrm. Soc. 1984, 131, 2744. (c) Whittingham, M. S. Science 1976, 192, 1126.
    29. Garnier, F., Chem. Phys. 1998, 227, 253.
    30. (a) Tessler, N.; Denton, G. J.; Friend, R. H. Nature 1996, 382, 695. (b) Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson, M. R.;Pei, Q. B.; Heeger, A. J. Science 1996, 273, 1833.
    31. Zaban, A.; Damant, Y. J. Phys. Chem. B 2000, 104, 10043.
    32. Zheng, L.; Urian, R. C. Chem. Mater. 2000, 12, 13.
    33. Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C.L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Chem. Mater. 2004, 16, 4401-4412.
    34. Gaupp, C. L.; Welsh, D. M.; Reynolds, J. R. Macromol. Rapid Commun. 2002, 23, 885.
    35. McCullough, R. D.; Lowe, R. D.; Tristramnagle, S.; Williams, S. P.; Jayaraman, M. J. Am. Chem. Soc. 1993, 26, 4457.
    36. Judeinstenin, P.; Sanchez, C. J. Mater. Chem. 1996, 6, 511.
    37. Reisfeld, R.; Jorgenson, Ch. K. “In Chemistry, Spectroscopy and 100 Applications of Sol-gel Glasses”, ed. Reisfield, R.; Jorgenson, C. K.; Springer-Verlag. Berlin, 1991, 207.
    38. Roncali, J. Chem. Rev. 1997, 97, 173-206.
    39. Sonmez, G.; Meng, H.; Wudl, F.; Chem. Mater. 2003, 15, 4923-4929.
    40. Gaupp, C. L.; Reynolds, J. R.; Macromolecules 2003, 36, 6305-6315
    41. Groenendaal, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Mater. 2000, 12, 481.
    42. Berlin, A.; Zanelli, A. Chem. Mater. 2004, 16, 3667-3676.
    43. Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Displays 2006, 27, 2–18.
    44. Meeker, D. L.; Mudigonda, D. S. K.; Osborn, J. M.; Loveday, D. C.; Ferraris, J. P. Macromolecules 1998, 31, 2943.
    45. DeLongchamp, D. M.; Kastantin, M. K.; Hammond, P. T. Chem. Mater. 2003, 15, 1575.
    46. Boehme, J. L.; Mudigonda, D. S. K.; Ferraris, J. P. Chem. Mater. 2001, 13, 4469.
    47. Schwendeman, I.; Gu, R. H.; So¨nmez, R.; Schottland,P.; Zong, K.; Welsh, D. M. and Reynolds, J. R. Chem. Mater. 2002, 14, 3118-3122.
    48. Unur, E.; Jung, J.-H.; Mortimer, R. J. and Reynolds, J. R. Chem. Mater. 2008, 20, 2328–2334.
    49. Seung, C; Choi, D. H.; Kim, S.-H.; Lee, S. B. Chem. Mater. 2005, 17, 4564-4566
    50. Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. Electrochimica Acta 2007, 52, 3330–3335.
    51. Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S. N.; Fitzmaurice, D. J. Phys. Chem. B 2000, 104, 11449-11459
    52. Cho, S.; Kwon, W. J.; Choi, S.-J.; Kim, P.; Park, S.-A.; Kim, J.; Son, S. J.; Xizo, R.; Kim, S.-H.; Lee, S. B.; Advanced Materials 2005, 17, 171-175.
    53. Jang, S.-Y.; Seshadri, V.; Khil, M.-S.; Kumar, A.; Marquez, M.; Mather, P. T.; Sotzing, G. A. Adv. Mater. 2005, 17, 2177-2180.
    54. Sotzing, G. A.; Reddinger, J. L.; Katritzky, A. R.; Soloducho, J.; Musgrave, R.; and Reynolds, J. R. Chem. Mater. 1997, 9, 1578-1587.
    55. Pei, J.; Yu, W.-L.; Ni, J.; Lai, Y.-H.; Huang, W. and Heeger, A.J. Macromolecules 2001, 34, 7241-7248.
    56. Cozzoli, P. D.; Kornowski, A.; Weller, H. J. Am. Chem. Soc. 2003, 125, 14539.
    57. Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Journal of Nanoparticle Research 2000, 2, 157.
    58. Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353.
    59. Korgel, B. A.; Fitzmaurice, D. Physical Reviw Letters 1998 ,80,3531.
    60. Leff, D. V.; Brandt, L. and Heath, J. R. Langmuir 1996, 12, 4723-4730.
    61. Ozer, N. Thin Solid Films 1997, 305, 80-87.
    62. 張信貞,科儀新知,1988(77年),10,1,44.
    63. http://elearning.stut.edu.tw/caster/3/no3/3-3.htm
    64. Alkan, S.; Cutler, C. A.; Reynolds, J. R. Adv. Funct. Mater. 2003, 13, 331-336.
    65. Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A. and Reynolds, J. R. Chem. Mater. 1998, 10, 896-902.
    66. Kobayashi, M.; Colaneri, N.; Boysel, M.; Wudl, F.; Heeger, A. J. J. Org. Chem. 1984, 49, 3382.
    67. Kurti, J.; Sujan, P. R.; Kdtesz, M. J. Am. Chem. Soc. 1991, 113, 9865.
    68. Lakshmikantham, M. V.; Lorcy, D. C.; Kelley, S.; Wu, X. L.; Parakka, J. P.; Metzger, R.M.; Cava, M. P. Adv. Mater. 1993, 5, 723.
    69. Lambert, T. L.; Ferraris, J. P. J. Chem. Soc, Chem. Commun. 1991, 752.
    70. Havinga, E. E.; Hoeve,T. W.; Wynberg, H. Polym. Bull. 1992, 29, 119-126.
    71. Groenendaal, L.; Zotti, G.; Jonas F. Synthetic Metals 2001, 118, 105-109.
    72. C. M. Lampert, Proc. SPIE—Int. Soc. Opt. Eng. 1999, 3788, 2.
    73. High Tech Report 3 Daimler–Benz AG, Stuttgart 1994, p. 44.
    74. Gaupp, C. L.; Welsh, D. M.; R. Rauh, D.; Reynolds, J. R.; Chem. Mater. 2002, 14, 3964-3970.
    75. http://www.fho-emden.de/~hoffmann/ciexyz29082000.pdf
    76. http://zh.wikipedia.org/w/index.php?title=CIE_1931_%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4&variant=zh-tw#CIE_xy_.E8.89.B2.E5.BA.A6.E5.9B.BE
    77. http://www.daicolor.co.jp/english/color_e/color_e01.html#Lab
    78. http://zh.wikipedia.org/w/index.php?title=Lab_%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4&variant=zh-tw
    79. Sonmez, G.; Shen, C. K. F.; Rubin, Y.; Wudl, F. Angew. Chem. Int. Ed. 2004, 43, 1498 –1502.
    80. Thompson, B. C.; Schottland, P.; Zong, K.; and Reynolds, J. R. Chem. Mater. 2000, 12, 1563-1571.
    81. Salzner, U.; Erkan Ko1se, M. J. Phys. Chem. B 2002, 106, 9221-9226.
    82. Gunbas, G. E.; Durmus, A.; Toppare, L. Adv. Mater. 2008, 20, 691–695.
    83. Zhu,Y.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2006, 39, 8712-8719.
    84. Durmus, A.; Gunbas, G. E.; Camurlub, P.; Toppare, L. Chem. Commun, 2007, 3246–3248 .
    85. Witker, D.; Reynolds, J. R. Macromolecules 2005, 38, 7636-7644.
    86. Cirpan, A.; Argun, A. A.; Grenier, C. R. G.; Reeves, B. D.; Reynolds, J. R. J. Mater. Chem. 2003, 13, 2422–2428.
    87. Walczak, R. M.; Reynolds, J. R. Adv. Mater. 2006, 18, 1121–1131.
    88. Walczak, R. M.; Leonard, J. K.; Reynold s, J. R. Macromolecules 2008, 41, 691-700.
    89. Welsh, D. M.; Kloeppner, L. J.; Madrigal, L.; Pinto, M. R.; Thompson, B. C.; Schanze, K.S.; Abboud, K. A.; Powell, D. and Reynolds, J. R. Macromolecules 2002, 35, 6517-6525.
    90. Nicho, M.E.; Hu, H.; L´opez-Mata, C.; Escalante, J. Sol. Energy Mater. Sol. Cells 2004, 82,105.
    91. Pang, Y.; Li, X.; Ding, H.; Shi, G.; Jin, L. Electrochimica Acta 2007, 52, 6172–6177.
    92. Zhou, L.; Xue, G. Synthetic Metals, 1997, 87, 193-195.
    93. Manisankar, P.; Vedhi, C.; Selvanathan , G.; Gurumallesh Prabu, H. Electrochimica Acta 2006, 51, 2964–2970.
    94. Yildiz, U. H.; Sahin, E.; Akhmedov, I. M.; Tanyeli, C.; Toppare, L. Journal of Polymer Science Part A Polymer Chemistry 2006, 44, 2215-2225.
    95. Beyazyildirim, S.; Camurlu, P.; Yilmaz, D.; Gullu, M.; Toppare, L. Journal of Electroanalytical Chemistry 2006, 587, 235–246.
    96. Linsebigler, A. L.; Lu, G.; Yates J. T., Jr. Chem. Rev. 1995, 95, 735–758.
    97. Yoshida, T.; Terada, K.; Schlettwein, D.; Oekermann,T.; Sugiura, T.; Minoura, H. Adv. Mater. 2000, 12, 1214–1217.
    98. Sayama, K.; Suguhara, H.; Arakawa, H. Chem. Mater. 1998, 10, 2419–2425.
    99. O’Regan, B.; Grätzel, M. Nature 1991, 353, 737–740.
    100. Sapp, S. A.; Sotzing, G. A.; Reddinger, J. L.;Reynolds, J. R. Adv. Mater. 1996, 8, 808.
    101. Heiney, P. A.; Fisher, J. E.; Djurado, D.; Ma,J.; Chen, D.; Winokur, M. J.; Coustel, N.; Bernier,P.; Karasz, F. E. Phys. Rev. B 1991, 44, 2507.
    102. Tourillon, G.; Garnier, F. J Polym. Sci. Part A:Polym. Phys. 1984, 22, 33.
    103. Qui, Y. J.; Reynolds, J. R. Polym. Eng. Sci. 1991,31, 417.
    104. Zhou, Q. X.; Kolaskie, C. J.; Miller, L. L. J. ElectroanalChem. 1987, 223, 283.
    105. Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.;Ozin, G. A. Nano Lett. 2004, 4, 1231.
    106. Garcia-Canadas, J.; Peter, L. M.; Upul Wijayantha,K. G. Electrochem. Commun. 2003, 5, 199.
    107. Moeller, M.; Asaftei, S.; Corr, D.; Ryan, M.;Walder, L. Adv. Mater. 2004, 16, 1558.
    108. Hagfeldt, A.; Vlachopoulos, N.; Gra‥ tzel, M. J. Electrochem. Soc. 1994, 141, L82.
    109. Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.;Klabunde, K. J. J. Phys. Chem. B 2001, 105,3353.
    110. Cheng, K.-C.; Chen, F.-R.; Kai, J.-J. Solar Energy Materials & Solar Cells 2006, 90, 1156–1165.
    111. Ho, K-C.; Fang, Y-W.; Hsu, Y.-C.; Chen, L.-C. Solid State Ionics 2003, 165, 279– 287.
    112. Siokou, A.; Ntais, S.; Papaefthimiou, S.; Leftheriotis, G.; Yianoulis, P. Surface Science 2004, 566–568, 1168–1173.
    113. Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R.; Chem. Mater. 1998, 10, 2101-2108.
    114. Fabretto, M.; Vaithianathan, T.; Hall, C.; Mazurkiewicz, J.; Innis, P.C.; Wallace, G.G.; Murphy, P. Electrochimica Acta 2008, 53, 2250–2257.
    115. Argun, A. A.; Cirpan, A.; Reynolds, J. R. Adv. Mater. 2003, 15, 1338-1341.
    116. Aubert, P.-H.; Argun, A. A.; Cirpan, A.; Tanner, D. B.; Reynolds, J. R. Chem. Mater. 2004, 16, 2386-2393.
    117. Huang, S.-W.; Ho, K.-C. Solar Energy Materials & Solar Cells 2006, 90, 491–505.

    QR CODE
    :::