| 研究生: |
李唐宇 Tang-yu Li |
|---|---|
| 論文名稱: |
結合多元資料重建三維房屋模型 Integrating Multi-source Data for the Generation of 3D Building Models |
| 指導教授: |
陳良健
Liang-Chien Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 建物模型 、航照影像 、光達 、向量圖 、建物重建 |
| 外文關鍵詞: | LIDAR, building model, building reconstruction, 2D map, aerial image |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數碼城市可為都市規劃、建設以及管理提供重要的決策資訊。三維建物模型的建立在數碼城市中是不可或缺的。
本研究以資訊融合的方式,結合向量圖、光達以及航照資料,重建三維建物模型。重建的重點包括平頂、山型和圓弧頂之建物。研究以向量圖獲取房屋輪廓,因此研究重點為房屋模型之重建。由於圓弧頂之房屋在影像上並無明顯特徵,因此研究用光達之三維資訊來描述圓弧屋頂。為了彌補光達點雲密度可能不足之情形,研究使用航照影像獲取房屋內部結構線。研究中,首先,對三種資料分別進行前處理的作業,接著將房屋內部之光達點雲,由不同的面方程式進行擬合,分出不同屋頂類型。研究中以面方程式描述圓弧頂建物,非圓弧頂者,山型屋將以面相交方式找出屋脊線。平頂屋部份結合光達和航照影像偵測階梯線。最後利用分割-合併-模塑方法模塑產生建物模型。
本研究測試區位於新竹科學園區。向量圖比例尺為1:1000,光達點雲密度為1.5點/m2,航照影像之空間解析力為12 cm。研究成果顯示,屋頂面分類成功率可達80%,模型重建正確率為85%。建物輪廓部分均方根誤差在X 方向為0.51 m,Y方向為0.41 m。模塑誤差為0.19 m。
Cyber city provides important information for the city planning, construction, and management. Three dimensional building models are the indispensable component in the cyber city.
This investigation integrates 2D maps, LIDAR data, and aerial images for building modeling. This research handles flat, gable, and cambered roofs. Vector maps are used to locate the building boundaries. Since a cambered roof does not have significant features in the image space, we use the LIDAR point clouds to model it. Because the density of the LIDAR point clouds might not be sufficient to reconstruct the internal facets of buildings, we employ aerial images. In the first step, the data preprocessing encloses the polylines of the maps then extract the point clouds that belong to a building. After filtering the point clouds, we fit the data by different surface functions. Through the roof hypothesis by employing point clouds, the camber roofs are parameterized. For non-camber roofs, the ridges of gable roofs will be intercepted by the two inclined planes. The step-edges of flat roofs are obtained by combining point clouds and image features. Then the lines are projected to the object space by ray-tracing. Finally, we shape the models by SMS method.
The test site is in the Industrial Technology Research Institute of Hsin-chu. The vector maps are with a scale of 1:1,000. The point density of LIDAR data is 1.5(point/m2), and the spatial resolution of aerial image is 12 cm. The result indicates the successful rate is 80% in building classification while the fully reconstruction rate is 85%. The RMSE of building boundaries are 0.51 m and 0.41 m in X and Y directions, respectively. The shaping error is 0.19 m.
陳衍豪,2001,「立體航測影像直線偵測與圓弧輪廓建物半自動之三
維模型重建」,碩士論文,國立中央大學土木工程研究所。
賴彥中,2004,「結合光達資料與數位空照影像重建三維建物模型」,
碩士論文,國立中央大學土木工程研究所。
劉建良,2004,「多航帶推掃式衛星方位平差及影像正射化」,碩士論
文,國立中央大學土木工程研究所。
郭志奕,2005,「結合光達資料與大比例尺向量圖重建三維建物模
型」,碩士論文,國立中央大學土木工程研究所。
謝其亨,2006,「結合光達點雲及航照影像重建直線與圓弧輪廓建
物」,碩士論文,國立中央大學土木工程研究所。
Ackermann, F., 1999. Airborne Laser Scanning – present status and future
expectations, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.
54, pp. 64-67.
Benkő, P., Martin, R.R., and Várady, T., 2001. Algorithms for reverse
engineering boundary representation models, Comput-Aid Des, Vol. 33,
pp. 839–851.
Baillard, C., and Zisserman, A., 2000. A plane sweep strategy for the
3Dreconstruction of buildings from multiple images, International
Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp.
56–62.
Canny, J., 1986. A Computational Approach to Edge Detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6,
pp. 679-698.
Chen, L.C., Teo, T.A., Rau, J.Y., Liu, J.K. and Hsu, W.C., 2005. Building
reconstruction from LIDAR data and aerial imagery, IEEE International
Geoscience and Remote Sensing Symposium, Vol. 4, pp. 2846-2849.
Chen, L.C., Teo, T.A., Hsieh, C.H., and Rau, J.Y., 2006. Reconstruction
of Building Models with Curvilinear Boundaries from Laser Scanner and
Aerial Imagery, Lecture Notes in Computer Science, Vol. 4319, pp. 24-33.
Golias, N.A. and Dutton, R.W., 1997. Delaunay triangulation and 3D
adaptive mesh generation, Finite Element in Analysis and Design, Vol. 25,
pp. 331-341.
Gonçalves, G., 2006. Analysis of interpolation errors in urban digital
surface models created from Lidar data, International Symposium on
Spatial Accuracy Assessment in Natural Resources and Environmental
Sciences, pp. 160-168.
Gorte, B., 2002. Segmentation of TIN-structured surface models,
Symposium on Geospatial Theory, Processing and Applications, Working
Group IV/6, Ottawa, Canada, July 8-12.
Gonzalez, R.C. and Woods, R. E., 2002. Digital Image Processing,
Prentice Hall, Inc., New Jersey , 2nd Edition, 793 p.
Gross, H., Thoennessen, U., and Hansen, W.V., 2005. 3D-Modeling of
Urban Structures, International Archives of Photogrammetry and Remote
Sensing, Vol. 36, Part 3/W24, pp. 137-142.
Gruen, A., and Wang, X., 1998. CC-Modeler-- a topology generator for
3-D city models, ISPRS Journal of Photogrammetry & Remote Sensing,
Vol. 53, pp. 286-295.
Grün, A., and Wang, X., 2001. News from CyberCity-Modeler,
Proceeding of Automatic Extraction of Man-Made Object from Aerial and
Space Images (III), (Eds. Baltsavias, E.P., A. Grüen, and L.Van Gool),
Centro Stefano Franscini, Monte Verita, Ascona, PP.93-102.
Habib, F.A., Kim, C.J., and Kim, E.M., 2005. Linear Features for
semi-Automatic Registration and Change Detection of Multi-Source
Imagery, IEEE International Geoscience & Remote Sensing Symposium,
Vol. 66, pp. 2117-2120.
Haala, N., and Brenner, C., 1999. Extraction of buildings and trees in
urban environments, ISPRS Journal of Photogrammetry & Remote
Sensing, Vol. 54, pp. 130-137.
Hofmann, A.D., 2004. Analysis of TIN-structure parameter spaces in
airborne laser scanner data for 3-D building model generation,
International Archives of Photogrammetry and Remote Sensing, Vol. 35,
Part B3, pp. 302-307.
Hough, P.V.C., 1962. Methods and Means for Recognizing Complex
Patterns, U.S. patent, 3,069,654.
Khoshelham, K., 2005. Region Refinement and Parametric
Reconstruction of Building Roofs by Integration of Image and Height
Data, International Archives of Photogrammetry and Remote Sensing, Vol.
36, Part 3/W24, pp. 3-8.
Leica Geosystems, 2006. Leica Geosystems brochure of ALS50-II,
http://gi.leica-geosystems.com/default.aspx (accessed 6, Jun, 2006).
Maas, H.G., and Vosselman, G., 1999. Two algorithms for extracting
building models from raw laser altimetry data, ISPRS Journal of
Photogrammetry & RemoteSensing, Vol. 54, pp. 153-163.
Maas, H.G., 2002. Methods for Measuring Height and Planimetry
Discrepancies in Airborne Laserscanner Data, Photogrammetric
Engineering & Remote Sensing, Vol. 68, No. 9, pp. 933-940.
Mannan, M.A., and Juergen, B., 2004. Virtual Environments in Planning
Affairs, International Archives of Photogrammetry and Remote Sensing,
Vol. 35, Part B8, pp. 22-26.
Mortenson, M,E., 1999. Mathematic for Computer Graphics Application,
Industrial Press, New York, 2nd Edition, pp. 202-204.
Noronha, S., and Nevatia, R., 2001. Detection and modeling of buildings
from multiple aerial images, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 23, No. 5, pp. 501-518.
Overby, J., Bodum, L., Kjems, E., and Ilsøe, P.M., 2004. Automatic 3d
Building Reconstruction from Airborne Laser Scanning and Cadastral
Data Using Hough Transform, International Archives of Photogrammetry
and Remote Sensing, Vol. 35, Part B3, pp. 298-303.
Rau, J.Y., and Chen, L.C., 2003. Robust Reconstruction of Building
Models from Three-Dimensional Line Segments, Photogrammetry
Engineering & Remote Sensing, Vol. 69, No. 2, pp. 181-188.
Rottensteiner, F., and Briese, C., 2003. Automatic Generation of Building
Models from LiDAR Data and the Integration of Aerial Images,
International Archives of Photogrammetry and Remote Sensing, Vol. 34,
Part3/W13, pp. 298-303.
Rottensteiner, F., Trinder, J., Clode, S., and Kubik, K., 2005. Automated
delineation of roof planes from LiDAR data, International Archives of
Photogrammetry and Remote Sensing, Vol. 36, Part 3/W19, pp. 221-226.
Schwalbe, E., 2004. 3D building model generation from airborne
laserscanner data by straight line detection in specific orthogonal
projections, International Archives of Photogrammetry and Remote
Sensing, Vol. 35, Part B3, pp. 249-254.
Schwalbe, E., Maas, H.G., and Seidel, F., 2005. 3D building model
generation from airborne laserscanner data using 2D GIS data and
orthogonal point cloud projections, International Archives of
Photogrammetry and Remote Sensing, Vol. 36, Part 3/W19, pp. 209-214.
Steinicke, F., Hinrichs, K., and Ropinski, T., 2006. A hybrid decision
support system for 3D city planning, International Archives of
Photogrammetry and Remote Sensing, Vol. 36, Part 2, pp. 103-108.
Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D building
models from aerial images and maps, ISPRS Journal of Photogrammetry
& Remote Sensing, Vol. 58, pp. 202-224.
Taillendier, F., and Deriche, R., 2004. Automatic building reconstruction
from aerial images: a generic Bayesian framework, International
Archives of Photogrammetry and Remote Sensing, Vol. 35, part B3, pp.
343-348.
Taillandier, F., 2005. Automatic Building Reconstruction from Cadastral
Maps and Aerial Images, International Archives of Photogrammetry and
Remote Sensing, Vol. 36, Part 3/W24, pp. 105-110.
Teo, T.A., Rau, J.Y., Chen, L.C., Liu, J.K., and Hsu, W.C., 2006. A
split-and-merge technique for building shaping, Proceedings of Asian
Conference on Remote Sensing, CD-ROM.
Teo, T.A., Rau, J.Y., Chen, L.C., Liu, J.K., and Hsu, W.C., 2006.
Reconstruction of complex buildings using LIDAR and 2D maps, Lecture
Notes in Geoinformation and Cartography, pp. 345-354.
Tseng, Y.H., and Wang, S., 2003. Semiautomatic building extraction
based on CSG model-image fitting, Photogrammetric Engineering &
Remote Sensing, Vol. 69, No. 2, pp. 171-179.
Vosselman, G. and S., Dijkman, 2002. 3D building model reconstruction
from point clouds and ground plans, International Archives of
Photogrammetry and Remote Sensing, Vol. 34, part 3/W4, Annapolis, pp.
37- 44.
Zhang, Y.J., Zhang, Z.Z., Zhang, J.Q., and Wu, J., 2005. 3D building
modeling with digital map, LIDAR data and video image sequences, The
Photogrammetric Record, Vol. 20, pp. 285-302.