跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李唐宇
Tang-yu Li
論文名稱: 結合多元資料重建三維房屋模型
Integrating Multi-source Data for the Generation of 3D Building Models
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 建物模型航照影像光達向量圖建物重建
外文關鍵詞: LIDAR, building model, building reconstruction, 2D map, aerial image
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數碼城市可為都市規劃、建設以及管理提供重要的決策資訊。三維建物模型的建立在數碼城市中是不可或缺的。
    本研究以資訊融合的方式,結合向量圖、光達以及航照資料,重建三維建物模型。重建的重點包括平頂、山型和圓弧頂之建物。研究以向量圖獲取房屋輪廓,因此研究重點為房屋模型之重建。由於圓弧頂之房屋在影像上並無明顯特徵,因此研究用光達之三維資訊來描述圓弧屋頂。為了彌補光達點雲密度可能不足之情形,研究使用航照影像獲取房屋內部結構線。研究中,首先,對三種資料分別進行前處理的作業,接著將房屋內部之光達點雲,由不同的面方程式進行擬合,分出不同屋頂類型。研究中以面方程式描述圓弧頂建物,非圓弧頂者,山型屋將以面相交方式找出屋脊線。平頂屋部份結合光達和航照影像偵測階梯線。最後利用分割-合併-模塑方法模塑產生建物模型。
    本研究測試區位於新竹科學園區。向量圖比例尺為1:1000,光達點雲密度為1.5點/m2,航照影像之空間解析力為12 cm。研究成果顯示,屋頂面分類成功率可達80%,模型重建正確率為85%。建物輪廓部分均方根誤差在X 方向為0.51 m,Y方向為0.41 m。模塑誤差為0.19 m。


    Cyber city provides important information for the city planning, construction, and management. Three dimensional building models are the indispensable component in the cyber city.
    This investigation integrates 2D maps, LIDAR data, and aerial images for building modeling. This research handles flat, gable, and cambered roofs. Vector maps are used to locate the building boundaries. Since a cambered roof does not have significant features in the image space, we use the LIDAR point clouds to model it. Because the density of the LIDAR point clouds might not be sufficient to reconstruct the internal facets of buildings, we employ aerial images. In the first step, the data preprocessing encloses the polylines of the maps then extract the point clouds that belong to a building. After filtering the point clouds, we fit the data by different surface functions. Through the roof hypothesis by employing point clouds, the camber roofs are parameterized. For non-camber roofs, the ridges of gable roofs will be intercepted by the two inclined planes. The step-edges of flat roofs are obtained by combining point clouds and image features. Then the lines are projected to the object space by ray-tracing. Finally, we shape the models by SMS method.
    The test site is in the Industrial Technology Research Institute of Hsin-chu. The vector maps are with a scale of 1:1,000. The point density of LIDAR data is 1.5(point/m2), and the spatial resolution of aerial image is 12 cm. The result indicates the successful rate is 80% in building classification while the fully reconstruction rate is 85%. The RMSE of building boundaries are 0.51 m and 0.41 m in X and Y directions, respectively. The shaping error is 0.19 m.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 前言 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 研究構想與流程 7 1.3.1 資料前處理 8 1.3.2 屋頂面分類 8 1.3.3 建物模型重建 9 第二章 資料前處理 12 2.1 建立封閉多邊形 12 2.2 萃取建物點雲 13 2.3 產生數值地表模型 14 2.4 建立航照方位 14 第三章 屋頂面分類 15 3.1 過濾光達點雲 16 3.1.1 點群分類 17 3.1.2 標準差濾點 18 3.1.3 三角網角度判斷 18 3.2 小區塊判斷 20 3.3 多層結構判斷 20 3.4 擬合屋頂面 22 3.4.1 屋頂區塊分割 22 3.4.2 擬合分析 23 3.4.3 斜率分析 26 3.5 凹多邊形處理 26 第四章 建物模型重建 30 4.1 屋頂共面分析 31 4.1.1 區塊成長法 32 4.1.2 屋頂面修正 34 4.2 物空間特徵萃取 36 4.2.1 邊界偵測 36 4.2.2 過濾邊界 36 4.2.3 建立工作區 37 4.3 像空間直線偵測 38 4.3.1 霍氏直線偵測 38 4.3.2 錯誤線段處理 40 4.4 建立三維線段 42 4.4.1 判定候選屋頂面 42 4.4.2 光線追蹤法 44 4.5 建立屋脊線 45 4.6 建物模塑 48 第五章 測試成果及討論 50 5.1 研究資料簡介 50 5.2 研究流程中各門檻值說明 53 5.3 資料前處理之成果 56 5.4 屋頂面分類之成果及討論 58 5.4.1 多層屋頂過濾成果 58 5.4.2屋頂面分類成果 60 5.4.3 平頂屋測試 61 5.4.4 山型屋測試 63 5.4.5 圓頂屋測試 65 5.4.6 弧頂屋測試 67 5.4.7 面分類錯誤例 69 5.5 建物模型重建之成果及討論 72 5.5.1建物模型重建成果 72 5.5.2 平頂屋測試(1) 74 5.5.3 平頂屋測試(2) 75 5.5.4 平頂屋測試(3) 76 5.5.5 山型屋測試 77 5.5.6 圓頂屋測試 78 5.5.7 弧頂屋測試 79 5.5.8 部分正確例(1) 80 5.5.9 部分正確例(2) 81 5.5.10 重建錯誤例(1) 82 5.5.11重建錯誤例(2) 83 5.5.12重建錯誤例(3) 84 5.5.13 建物內部結構線評估 85 5.5.14 模塑誤差 86 5.5.15誤差來源討論 88 第六章 結論與建議 89 參考文獻 92

    陳衍豪,2001,「立體航測影像直線偵測與圓弧輪廓建物半自動之三
    維模型重建」,碩士論文,國立中央大學土木工程研究所。
    賴彥中,2004,「結合光達資料與數位空照影像重建三維建物模型」,
    碩士論文,國立中央大學土木工程研究所。
    劉建良,2004,「多航帶推掃式衛星方位平差及影像正射化」,碩士論
    文,國立中央大學土木工程研究所。
    郭志奕,2005,「結合光達資料與大比例尺向量圖重建三維建物模
    型」,碩士論文,國立中央大學土木工程研究所。
    謝其亨,2006,「結合光達點雲及航照影像重建直線與圓弧輪廓建
    物」,碩士論文,國立中央大學土木工程研究所。
    Ackermann, F., 1999. Airborne Laser Scanning – present status and future
    expectations, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.
    54, pp. 64-67.
    Benkő, P., Martin, R.R., and Várady, T., 2001. Algorithms for reverse
    engineering boundary representation models, Comput-Aid Des, Vol. 33,
    pp. 839–851.
    Baillard, C., and Zisserman, A., 2000. A plane sweep strategy for the
    3Dreconstruction of buildings from multiple images, International
    Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp.
    56–62.
    Canny, J., 1986. A Computational Approach to Edge Detection, IEEE
    Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6,
    pp. 679-698.
    Chen, L.C., Teo, T.A., Rau, J.Y., Liu, J.K. and Hsu, W.C., 2005. Building
    reconstruction from LIDAR data and aerial imagery, IEEE International
    Geoscience and Remote Sensing Symposium, Vol. 4, pp. 2846-2849.
    Chen, L.C., Teo, T.A., Hsieh, C.H., and Rau, J.Y., 2006. Reconstruction
    of Building Models with Curvilinear Boundaries from Laser Scanner and
    Aerial Imagery, Lecture Notes in Computer Science, Vol. 4319, pp. 24-33.
    Golias, N.A. and Dutton, R.W., 1997. Delaunay triangulation and 3D
    adaptive mesh generation, Finite Element in Analysis and Design, Vol. 25,
    pp. 331-341.
    Gonçalves, G., 2006. Analysis of interpolation errors in urban digital
    surface models created from Lidar data, International Symposium on
    Spatial Accuracy Assessment in Natural Resources and Environmental
    Sciences, pp. 160-168.
    Gorte, B., 2002. Segmentation of TIN-structured surface models,
    Symposium on Geospatial Theory, Processing and Applications, Working
    Group IV/6, Ottawa, Canada, July 8-12.
    Gonzalez, R.C. and Woods, R. E., 2002. Digital Image Processing,
    Prentice Hall, Inc., New Jersey , 2nd Edition, 793 p.
    Gross, H., Thoennessen, U., and Hansen, W.V., 2005. 3D-Modeling of
    Urban Structures, International Archives of Photogrammetry and Remote
    Sensing, Vol. 36, Part 3/W24, pp. 137-142.
    Gruen, A., and Wang, X., 1998. CC-Modeler-- a topology generator for
    3-D city models, ISPRS Journal of Photogrammetry & Remote Sensing,
    Vol. 53, pp. 286-295.
    Grün, A., and Wang, X., 2001. News from CyberCity-Modeler,
    Proceeding of Automatic Extraction of Man-Made Object from Aerial and
    Space Images (III), (Eds. Baltsavias, E.P., A. Grüen, and L.Van Gool),
    Centro Stefano Franscini, Monte Verita, Ascona, PP.93-102.
    Habib, F.A., Kim, C.J., and Kim, E.M., 2005. Linear Features for
    semi-Automatic Registration and Change Detection of Multi-Source
    Imagery, IEEE International Geoscience & Remote Sensing Symposium,
    Vol. 66, pp. 2117-2120.
    Haala, N., and Brenner, C., 1999. Extraction of buildings and trees in
    urban environments, ISPRS Journal of Photogrammetry & Remote
    Sensing, Vol. 54, pp. 130-137.
    Hofmann, A.D., 2004. Analysis of TIN-structure parameter spaces in
    airborne laser scanner data for 3-D building model generation,
    International Archives of Photogrammetry and Remote Sensing, Vol. 35,
    Part B3, pp. 302-307.
    Hough, P.V.C., 1962. Methods and Means for Recognizing Complex
    Patterns, U.S. patent, 3,069,654.
    Khoshelham, K., 2005. Region Refinement and Parametric
    Reconstruction of Building Roofs by Integration of Image and Height
    Data, International Archives of Photogrammetry and Remote Sensing, Vol.
    36, Part 3/W24, pp. 3-8.
    Leica Geosystems, 2006. Leica Geosystems brochure of ALS50-II,
    http://gi.leica-geosystems.com/default.aspx (accessed 6, Jun, 2006).
    Maas, H.G., and Vosselman, G., 1999. Two algorithms for extracting
    building models from raw laser altimetry data, ISPRS Journal of
    Photogrammetry & RemoteSensing, Vol. 54, pp. 153-163.
    Maas, H.G., 2002. Methods for Measuring Height and Planimetry
    Discrepancies in Airborne Laserscanner Data, Photogrammetric
    Engineering & Remote Sensing, Vol. 68, No. 9, pp. 933-940.
    Mannan, M.A., and Juergen, B., 2004. Virtual Environments in Planning
    Affairs, International Archives of Photogrammetry and Remote Sensing,
    Vol. 35, Part B8, pp. 22-26.
    Mortenson, M,E., 1999. Mathematic for Computer Graphics Application,
    Industrial Press, New York, 2nd Edition, pp. 202-204.
    Noronha, S., and Nevatia, R., 2001. Detection and modeling of buildings
    from multiple aerial images, IEEE Transactions on Pattern Analysis and
    Machine Intelligence, Vol. 23, No. 5, pp. 501-518.
    Overby, J., Bodum, L., Kjems, E., and Ilsøe, P.M., 2004. Automatic 3d
    Building Reconstruction from Airborne Laser Scanning and Cadastral
    Data Using Hough Transform, International Archives of Photogrammetry
    and Remote Sensing, Vol. 35, Part B3, pp. 298-303.
    Rau, J.Y., and Chen, L.C., 2003. Robust Reconstruction of Building
    Models from Three-Dimensional Line Segments, Photogrammetry
    Engineering & Remote Sensing, Vol. 69, No. 2, pp. 181-188.
    Rottensteiner, F., and Briese, C., 2003. Automatic Generation of Building
    Models from LiDAR Data and the Integration of Aerial Images,
    International Archives of Photogrammetry and Remote Sensing, Vol. 34,
    Part3/W13, pp. 298-303.
    Rottensteiner, F., Trinder, J., Clode, S., and Kubik, K., 2005. Automated
    delineation of roof planes from LiDAR data, International Archives of
    Photogrammetry and Remote Sensing, Vol. 36, Part 3/W19, pp. 221-226.
    Schwalbe, E., 2004. 3D building model generation from airborne
    laserscanner data by straight line detection in specific orthogonal
    projections, International Archives of Photogrammetry and Remote
    Sensing, Vol. 35, Part B3, pp. 249-254.
    Schwalbe, E., Maas, H.G., and Seidel, F., 2005. 3D building model
    generation from airborne laserscanner data using 2D GIS data and
    orthogonal point cloud projections, International Archives of
    Photogrammetry and Remote Sensing, Vol. 36, Part 3/W19, pp. 209-214.
    Steinicke, F., Hinrichs, K., and Ropinski, T., 2006. A hybrid decision
    support system for 3D city planning, International Archives of
    Photogrammetry and Remote Sensing, Vol. 36, Part 2, pp. 103-108.
    Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D building
    models from aerial images and maps, ISPRS Journal of Photogrammetry
    & Remote Sensing, Vol. 58, pp. 202-224.
    Taillendier, F., and Deriche, R., 2004. Automatic building reconstruction
    from aerial images: a generic Bayesian framework, International
    Archives of Photogrammetry and Remote Sensing, Vol. 35, part B3, pp.
    343-348.
    Taillandier, F., 2005. Automatic Building Reconstruction from Cadastral
    Maps and Aerial Images, International Archives of Photogrammetry and
    Remote Sensing, Vol. 36, Part 3/W24, pp. 105-110.
    Teo, T.A., Rau, J.Y., Chen, L.C., Liu, J.K., and Hsu, W.C., 2006. A
    split-and-merge technique for building shaping, Proceedings of Asian
    Conference on Remote Sensing, CD-ROM.
    Teo, T.A., Rau, J.Y., Chen, L.C., Liu, J.K., and Hsu, W.C., 2006.
    Reconstruction of complex buildings using LIDAR and 2D maps, Lecture
    Notes in Geoinformation and Cartography, pp. 345-354.
    Tseng, Y.H., and Wang, S., 2003. Semiautomatic building extraction
    based on CSG model-image fitting, Photogrammetric Engineering &
    Remote Sensing, Vol. 69, No. 2, pp. 171-179.
    Vosselman, G. and S., Dijkman, 2002. 3D building model reconstruction
    from point clouds and ground plans, International Archives of
    Photogrammetry and Remote Sensing, Vol. 34, part 3/W4, Annapolis, pp.
    37- 44.
    Zhang, Y.J., Zhang, Z.Z., Zhang, J.Q., and Wu, J., 2005. 3D building
    modeling with digital map, LIDAR data and video image sequences, The
    Photogrammetric Record, Vol. 20, pp. 285-302.

    QR CODE
    :::