跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳子朋
Tzu-Peng Wu
論文名稱: 關於漢米爾頓矩陣的某些平滑性分解
Some Smooth Decompositions for Hamiltonian Matrices
指導教授: 陳建隆
Jann-Long Chern
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 89
語文別: 中文
論文頁數: 24
中文關鍵詞: 漢米爾頓
外文關鍵詞: Hamiltonain
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 的Hamiltonain 矩陣,並探討其平滑的規格化正交分解。首先我們提供了
    一個簡單的方法來證明 Hamiltonain 矩陣的SVD。再來,我們利用前面討
    論的Hamiltonian矩陣的觀點來簡化 Takagi 分解的證明。最後,我們探討在最佳化控制系統中伴隨著 Hamiltonain 矩陣所發生的一些現象。



    smooth Hamiltonian matrix valued functions of constant rank. First, we will pro-
    vide a simple method to verify the singular value decomposition for Hamiltonian
    matrices of constant rank and then use the result to prove related decompositions.
    Second, we make use of the "Hamiltonian viewpoint" to give another proof of the
    Takagi''s factorization. At last, we conclude a few facts in optimal control system
    where Hamiltonian matrices arise very often.

    0.Abstract.............1 1.Introduction.........1 2.Orthonormal Decompositions for Hamiltonain Matrices...4 3.Smooth Takagi''s factorization....12 4.Some Facts in Optimal Control System...19 5.Reference....24

    [1] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols.
    Numerical computation of singular value decomposition by a matrix value
    function. Numer. Math., 60:1-40,1991.
    [2] K. E. Brebnan, S. L. Campbell, and L. R. Petzold. Numerical solution
    of IVPs in DAEs. North-Holland. New York, 1989.
    [3] J.-L Chern and L. Dieci, Smoothness and periodicity of some matrix
    decompositions. SIAM J Matrix Anal. Appl., 22:3:772-792, 2000.
    [4] J,-L. Chern. On the smooth Takagi''s factorization. Preprint.
    [5] G. H. Golub and C. F. Van Loan. Matrix computation. The Johns
    Hopkins University Press, 2nd edition.
    [6] S. Campbell. Numerical solution of higher index linear time varying
    singular systems of DAEs. SIAM J. Scient. Stat. Comp., 6:334-348,
    1988.
    [7] C. Paige and C. F. Van Loan. A Schur decomposition for Hamiltonian
    matrices. Linear Algebra and Its Applications., 41:11-32, 1981.
    [8] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
    University Press, New York, 1985.
    [9] P. Kunkel and V. Merhrman. Cannonical forms of linear DAEs with
    variable coeÆcients. J. Comp Appl. Math., 56:225-251, 1994.
    [10] E. V. Mamontov. Some properties of a system of rst order ordinary
    dierential nonlinear equations with a singular matrix of constant rank
    in front of the vector of the derivatives. DierentsialnyeUravneniya.,
    24:1055-1058, 1988.
    [11] Y. Sibuya. Some global properties of matrices of functions of one
    variable. Math.Annal., 161:66-77, 1965.
    [12] G. W. Stewart. Introduction to matrix computations. Academic, New
    York, 1973.
    [13] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford U.P.,
    London, 1965.

    QR CODE
    :::