| 研究生: |
吳子朋 Tzu-Peng Wu |
|---|---|
| 論文名稱: |
關於漢米爾頓矩陣的某些平滑性分解 Some Smooth Decompositions for Hamiltonian Matrices |
| 指導教授: |
陳建隆
Jann-Long Chern |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 24 |
| 中文關鍵詞: | 漢米爾頓 |
| 外文關鍵詞: | Hamiltonain |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
的Hamiltonain 矩陣,並探討其平滑的規格化正交分解。首先我們提供了
一個簡單的方法來證明 Hamiltonain 矩陣的SVD。再來,我們利用前面討
論的Hamiltonian矩陣的觀點來簡化 Takagi 分解的證明。最後,我們探討在最佳化控制系統中伴隨著 Hamiltonain 矩陣所發生的一些現象。
smooth Hamiltonian matrix valued functions of constant rank. First, we will pro-
vide a simple method to verify the singular value decomposition for Hamiltonian
matrices of constant rank and then use the result to prove related decompositions.
Second, we make use of the "Hamiltonian viewpoint" to give another proof of the
Takagi''s factorization. At last, we conclude a few facts in optimal control system
where Hamiltonian matrices arise very often.
[1] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols.
Numerical computation of singular value decomposition by a matrix value
function. Numer. Math., 60:1-40,1991.
[2] K. E. Brebnan, S. L. Campbell, and L. R. Petzold. Numerical solution
of IVPs in DAEs. North-Holland. New York, 1989.
[3] J.-L Chern and L. Dieci, Smoothness and periodicity of some matrix
decompositions. SIAM J Matrix Anal. Appl., 22:3:772-792, 2000.
[4] J,-L. Chern. On the smooth Takagi''s factorization. Preprint.
[5] G. H. Golub and C. F. Van Loan. Matrix computation. The Johns
Hopkins University Press, 2nd edition.
[6] S. Campbell. Numerical solution of higher index linear time varying
singular systems of DAEs. SIAM J. Scient. Stat. Comp., 6:334-348,
1988.
[7] C. Paige and C. F. Van Loan. A Schur decomposition for Hamiltonian
matrices. Linear Algebra and Its Applications., 41:11-32, 1981.
[8] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge
University Press, New York, 1985.
[9] P. Kunkel and V. Merhrman. Cannonical forms of linear DAEs with
variable coeÆcients. J. Comp Appl. Math., 56:225-251, 1994.
[10] E. V. Mamontov. Some properties of a system of rst order ordinary
dierential nonlinear equations with a singular matrix of constant rank
in front of the vector of the derivatives. DierentsialnyeUravneniya.,
24:1055-1058, 1988.
[11] Y. Sibuya. Some global properties of matrices of functions of one
variable. Math.Annal., 161:66-77, 1965.
[12] G. W. Stewart. Introduction to matrix computations. Academic, New
York, 1973.
[13] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford U.P.,
London, 1965.