跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾靈光
Ling-Kuang Chung
論文名稱: 利用 M 積分處理三維多裂縫
Using M-integral to calculate three-dimensional multiple cracks problem
指導教授: 張瑞宏
Jui-Hung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 78
中文關鍵詞: M-積分有限元素法積分曲面無關積分原點無關裂縫間距幾何形狀中心
外文關鍵詞: periodic crack, surface energy, M-integral, surface independent, geometric center, origin independence
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • M-積分是研究物體具有裂縫之破壞行為的重要參數。本論文結合有限元素法並利用M-積分分析三維多裂縫線彈性材料在非均勻分佈載重作用下的表現。本研究針對具有任意形狀之二維多裂縫及三維圓盤形裂縫問題,進行M-積分式的理論及物理意義的推導,其次証明M-積分具有與積分曲面無關的特性。
    在三維問題,對單裂縫的M-積分計算結果顯示與積分曲面無關和與積分原點無關的特性;多裂縫問題的M-積分計算,則需對所有裂縫的幾何形狀中心做計算,並且裂縫的幾何位置亦會影響M-積分。
    二維M-積分的物理意義為兩倍裂縫面形成時所需要的能量變化,三維M-積分的物理意義則為三倍裂縫面形成時所需要的能量變化。
    此外,利用不同裂縫間距的有限元素網格探討裂縫間距對於M-積分的影響。裂縫間距比較小的情況下所得到的M積分值較小。
    關鍵詞:M-積分、有限元素法、積分曲面無關、積分原點無關、幾何形狀中心、裂縫間距。


    In this research, we analyze 2D and 3D crack problems by using the M-integral. First, we derive the M-integral for multiple arbitrary-shaped cracks in 2-D and 3D situations. Then, we verify the physical intepretation and path independent property of the M-integral.
    In 3D single crack situations, the result of M-integral has the property of surface independence and origin independence. In 3D multiple cracked situation, the result of M-integral associated with geometric center is calculated, and the origin of the coordinate system affects the computation result.
    In 2-D situation, M-integral is equal to twice the surface energy required for the formation of the whole cracks. In 3-D situation, due to the different geometry of the cracks, the M-integral appears to be equal to triple the surface energy required for the formation of the whole cracks.
    Furthermore, we also study the relation between periodic cracks and the M-integral.
    Keywords : M-integral, surface independent, origin independence, geometric center, surface energy, periodic crack

    摘 要i Abstractii 誌謝iii 目錄v 表目錄vii 圖目錄viii 第一章 緒 論1 1.1研究動機與目的1 1.2文獻回顧與探討2 1.3論文內容5 第二章 文獻回顧:二維M-積分的分析理論與推導6 2.1 前言6 2.2 二維單裂縫的M-積分理論及路徑無關特性6 2.2.1 二維單裂縫的M-積分理論6 2.2.2 二維M-積分之物理意義9 2.2.3 與積分路徑無關特性11 2.3 二維多裂縫的M-積分11 2.3.1 二維多裂縫的M-積分理論11 2.3.2 與積分路徑無關特性12 2.3.3與積分原點無關特性12 第三章 三維M-積分的分析理論與推導15 3.1前言15 3.2三維單裂縫的M-積分理論與推導15 3.3與積分曲面無關特性(surface-independent)18 3.4三維M-積分之物理意義18 3.5數值計算範例:圓盤形裂縫位於圓柱體內部中央處20 3.5.1有限元素網格分析20 第四章 利用M-積分分析計算三維多裂縫問題22 4.1三維多裂縫的M-積分理論與推導22 4.2 與積分曲面無關特性(surface-independent)23 4.3 水平排列雙圓盤形裂縫24 4.3.1 有限元素計算結果25 4.3.2 載重與積分原點的關係25 4.3.3 M-積分與積分區域無關之特性26 4.3.4 三維多裂縫之M-積分26 4.4 裂縫間距對於M-積分之影響27 4.4.1 裂縫間距對於M-積分和ΔΠ之影響28 4.4.2 裂縫間距對於單一裂縫形成之影響28 第五章 結論30 參考文獻32 附 錄I M與Jk積分之詳細推導35 附 錄II Jk積分與積分路徑2D及與積分曲面3D無關之證明38 附 錄III M-積分與積分路徑2D及與積分曲面3D無關之證明40

    Chao-Shi Chen, Chia-Hau Chen, Ernian Pan , “Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations”, Engineering Analysis with Boundary Elements, Volume 33, Issue 2, February 2009, Pages 128-136
    G.Z. Wang, X.L. Liu, F.Z. Xuan, S.T. Tu, “Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens”, International Journal of Solids and Structures, Volume 47, Issue 2, February 2010, Pages 51-57
    V.I. Kushch, A.S. Sangani , “Stress intensity factor and effective stiffness of a solid containing aligned penny-shaped cracks” ,International Journal of Solids and Structures, Volume 37, Issue 44, November 2000, Pages 6555-6570
    Yi-Heng Chen,“M-integral analysis for two-dimensional solids with strongly interacting microcracks. Part I: in an infinite brittle solid” ,International Journal of Solids and Structures, Volume 38, Issue 18, May 2001, Pages 3193-3212
    J.H. Chang, D.J. Wu, “Stress intensity factor computation along a non-planar curved crack in three dimensions”, International Journal of Solids and Structures, Volume 44, Issue 2, 15 January 2007, Pages 371-386
    Han J.J., Dhanasekar M., “Modelling cracks in arbitrarily shaped
    finite bodies by distribution of dislocation”, International Journal of Solid
    and Structures, Volume 41, Issue 2, January 2004, Pages 399-411
    Jan Sladek , Vladimir Sladek, “Evaluation of the Elastic T-stress in Three-dimensional Crack Problems Using an Integral Formula”, Volume 101, Number 4, 2000 , Pages 47-52
    J.H. Chang , A.J. Chien , “Evaluation of M-integral for anisotropic elastic media with multiple defects”, International Journal of Fracture , Volume 114, Number 3, 2002 , Pages 267-289
    P.Isaksson , R. Hagglund ,“Strain energy distribution in a crack-tip region in random fiber networks”, International Journal of Fracture , Volume 156, Number 1, 2009 , Pages 1-9
    Y.Z. Chen , X.Y. Lin , Z.X. Wang , “Evaluation of the stress intensity factors and the T-stress in periodic crack problem”, International Journal of Fracture , Volume 156, Number 2, 2009 , Pages 203-216
    M. Lorentzon, K. Eriksson , “A path independent integral for the crack extension force of the circular arc crack”, Engineering Fracture Mechanics , Volume 66, Issue 5, July 2000 , Pages 423-439
    Xin Wang , “Two-parameter characterization of elastic–plastic crack front fields: Surface cracked plates under tensile loading”, Engineering Fracture Mechanics , Volume 76, Issue 7, May 2009 ,Pages 827-982
    X.L. Fu, G.F. Wang, X.Q. Feng , “Surface effects on mode-I crack tip fields: A numerical study”, Engineering Fracture Mechanics , Volume 77 Issue 5 , May 2010 , Pages 1031-1202
    P.V. Jogdand, K.S.R.K. Murthy, “A finite element based interior collocation method for the computation of stress intensity factors and T-stresses”, Engineering Fracture Mechanics Volume 77 Issue 5 , May 2010 , Pages 1031-1202
    葉俊彬,「應用Jk積分於均質與非均質材料在裂縫延伸時之能量釋放計算」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
    陳哲彬,「複合材料垂直於介面上裂縫之Jk積分計算」,碩士論文,國立中央大學土木工程研究所,中壢(1997)。
    鄔德傳,「三維裂縫之Jk積分與應力強度因子之數值計算」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
    康宇權,「混合載重下的三維多裂縫問題之M-積分」,碩士論文,國立中央大學土木工程研究所,中壢(2010)。

    QR CODE
    :::