跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱舜謙
Shun-Chien Chiu
論文名稱: 半導體製造設備 (WFE, Wafer Fab Equipment)精密電源技術創新趨勢與專利分析研究
A Study on the Innovation Trend and Patent Analysis of Precision Power Supply Technology for Semiconductor Fabrication Equipment (WFE, Wafer Fab Equipment)
指導教授: 李雄
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 209
中文關鍵詞: 半導體製造設備精密電源射頻電源專利分析智慧控制
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程技術持續邁向奈米乃至埃米等級,製程對薄膜沉積與蝕刻精準度的要求日趨嚴苛,特別是在電漿驅動相關製程中,電源供應器的性能與穩定性已成為提升良率與製程控制關鍵能力的核心。本研究以「半導體製造設備(Wafer Fab Equipment, WFE)」中所使用之精密電源技術為主軸,針對其技術創新趨勢與專利佈局進行系統性分析,並聚焦於三大核心製程技術——物理氣相沉積(PVD)、化學氣相沉積(CVD)與蝕刻(Etching)——所倚賴之電源應用。
    本論文旨在達成四大研究目標:(一)釐清技術需求隨製程微縮演進之變化趨勢;(二)解析主要技術供應商的專利策略與研發方向;(三)比較廠商間專利組合的技術優劣勢;(四)揭示未來潛在之關鍵技術發展方向。本研究選定四家國際具代表性的電源廠商進行比較分析,分別為 Advanced Energy(AE)、TRUMPF Hüttinger(TRUMPF)、MKS Instruments(MKS)以及台達電子(Delta Electronics)。資料來源涵蓋2005年至2024年間美國、歐洲、台灣、中國、日本與南韓等主要專利市場,經由文獻回顧建立關鍵詞庫,並以IPC分類(如 H01J 37/32、H05H 1/46)進行檢索與交叉比對,選取代表性IPA核心專利進行深入剖析。
    研究發現,當前電源技術創新已由傳統直流(DC)架構向脈衝直流(Pulsed DC)及射頻(RF)架構進化,並導入精緻化控制機制以因應製程的複雜性與變動性。發展焦點包含:高階脈衝調變(如Pulse Shaping、Multi-level Pulsing)、極速阻抗匹配(如頻率捷變、固態匹配)及整合人工智慧與機器學習(AI/ML)之智慧化控制系統等,以因應原子層沉積/蝕刻(ALD/ALE)與高深寬比(HAR)結構製程的挑戰。
    專利佈局方面,AE展現其在RF功率控制與系統整合(NavX™、eVoS™)上的領先地位;TRUMPF則以高穩定輸出與智慧頻率調諧為發展核心(如CombineLine™與CompensateLine);MKS透過策略性併購與「Surround the Chamber®」整合策略,建構全方位子系統解決方案;而台達電子則憑藉其於電力電子與散熱管理領域之深厚技術,積極進軍半導體製程電源市場,展現成為潛力挑戰者的態勢。
    綜合分析結果顯示,未來半導體製程電源技術將朝向更高精度、更快速響應、更高控制自由度以及智慧化整合發展。競爭優勢將不再侷限於單一硬體性能,而是轉向系統解決能力、製程整合程度與智慧運算支援的全面比拚。本研究之發現可提供產業界於技術研發與專利策略制訂上具體之參考依據。


    As semiconductor manufacturing continues to advance toward nanometer and even angstrom-level nodes, the demands for precision in film deposition and etching processes have intensified. In plasma-based processes, the performance and stability of power supply units (PSUs) have become vital to achieving high yields and precise process control. This study investigates the technological innovation trends and patent landscape of precision power supply systems used in wafer fabrication equipment (WFE), with a focus on their applications in three core processes: physical vapor deposition (PVD), chemical vapor deposition (CVD), and etching.
    The research aims to: (1) identify how technology requirements evolve with process scaling; (2) analyze the patent strategies of major PSU suppliers; (3) compare technical strengths and weaknesses across firms; and (4) reveal emerging trends in power supply innovation. Four representative companies—Advanced Energy (AE), TRUMPF Hüttinger (TRUMPF), MKS Instruments (MKS), and Delta Electronics—were selected for comparative study. Patent data from 2005 to 2024 across the US, EU, Taiwan, China, Japan, and South Korea were examined using IPC codes (e.g., H01J 37/32, H05H 1/46) and refined keyword mapping to extract and analyze core IPA patents.
    Findings show that PSU technologies have transitioned from conventional DC systems to pulsed DC and RF architectures, emphasizing greater precision and adaptability. Innovation is centered on advanced pulsing (e.g., pulse shaping, multi-level pulsing), ultra-fast impedance matching (e.g., frequency agility, solid-state matching), and AI/ML-driven digital control to support atomic layer processing (ALD/ALE) and high aspect ratio (HAR) structures.
    AE leads in RF power control and system integration (e.g., NavX™, eVoS™); TRUMPF focuses on stable outputs and adaptive frequency tuning (e.g., CombineLine™, CompensateLine); MKS employs its “Surround the Chamber®” strategy to deliver integrated subsystems; while Delta, leveraging its expertise in power conversion and thermal management, is positioning itself as a rising player in semiconductor PSUs.
    In conclusion, next-generation PSU development is moving toward higher precision, faster response, greater control flexibility, and intelligent system integration. Future competition will extend beyond hardware performance to include holistic solutions and process-level optimization. This research offers practical insights for industry stakeholders in formulating R&D directions and patent strategies.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 4 1.3 研究範圍與限制 5 1.4 論文架構 7 第二章 文獻探討 8 2.1 半導體製程技術概述 8 2.1.1 物理氣相沉積(Physical Vapor Deposition, PVD) 8 2.1.2 化學氣相沉積(Chemical Vapor Deposition, CVD) 9 2.1.3 蝕刻(Etching) 11 2.2 PVD/CVD/ETCHING 製程中的電源供應器技術 12 2.2.1 直流電源供應器(DC Power Supply) 12 2.2.2 脈衝直流電源供應器(Pulsed DC Power Supply) 12 2.2.3 射頻電源供應器(RF Power Supply) 12 2.2.4 阻抗匹配(Impedance Matching) 13 2.2.5 電源供應器的控制與監測 14 2.2.6 不同製程的特定需求 15 2.3 專利分析理論與方法 15 2.3.1 專利資訊的價值與應用 16 2.3.2 常用專利分析指標 16 2.3.3 專利地圖(Patent Mapping) 17 2.4 電源供應器於製程中之角色 18 2.5 目標公司簡介 20 2.5.1 Advanced Energy (AE) 20 2.5.2 TRUMPF Hüttinger 21 2.5.3 Delta Electronics (台達電子) 21 2.5.4 MKS Instruments 21 第三章 專利分析方法與分類 23 3.1 研究流程 23 3.2 專利檢索策略(PATENT SEARCH STRATEGY) 24 3.3 專利分類標準 (PATENT CLASSIFICATION CRITERIA) 26 3.4 分析指標 (ANALYSIS METRICS) 27 第四章 主要廠商專利佈局分析 28 4.1 ADVANCED ENERGY (AE) 28 4.1.1. 公司概況與市場地位 (Company Overview and Market Position): 28 4.1.2. 相關產品組合 (Product Portfolio Relevance - PVD/CVD/Etch): 30 4.1.3. 關鍵技術與趨勢 (Patent Portfolio Analysis: Key Technologies and Trends): 31 4.1.4. 專利活動反映之策略重點 (Strategic Focus based on Patent Activity): 33 4.2 TRUMPF HÜTTINGER (TRUMPF) 34 4.2.1. 公司概況與市場地位 (Company Overview and Market Position) 34 4.2.2. 相關產品組合 (Product Portfolio Relevance): 37 4.2.3. 關鍵技術與趨勢 (Patent Portfolio Analysis: Key Technologies and Trends): 39 4.2.4. 專利活動反映之策略重點 (Strategic Focus based on Patent Activity): 41 4.3 MKS INSTRUMENTS (MKS) 42 4.3.1. 公司概況與市場地位 (Company Overview and Market Position): 42 4.3.2. 相關產品組合 (Product Portfolio Relevance - PVD/CVD/Etch): 45 4.3.3. 關鍵技術與趨勢 (Patent Portfolio Analysis: Key Technologies and Trends): 46 4.3.4. 專利活動反映之策略重點 (Strategic Focus based on Patent Activity): 47 4.4 DELTA ELECTRONICS (DELTA) 49 4.4.1. 公司概況與市場地位 (Company Overview and Market Position): 49 4.4.2. 相關產品組合 (Product Portfolio Relevance - PVD/CVD/Etch): 51 4.4.3. 關鍵技術與趨勢 (Patent Portfolio Analysis: Key Technologies and Trends): 53 4.4.4. 專利活動反映之策略重點 (Strategic Focus based on Patent Activity): 55 4.5 比較及總結 (COMPARATIVE SUMMARY) 56 4.5.1. 各公司在各專利局申請狀況 57 4.5.2. 各公司的技術佈局與策略規劃 58 4.5.3. 總結 62 第五章 技術趨勢與未來展望 66 5.1. 電源供應技術演進 (EVOLUTION OF POWER SUPPLY TECHNOLOGY): 66 5.2. 阻抗匹配技術發展 (DEVELOPMENT OF IMPEDANCE MATCHING ECHNOLOGY): 67 5.3. 智慧化與製程控制整合 (INTEGRATION WITH INTELLIGENT PROCESS CONTROL): 68 5.4. 新興製程需求 (DEMANDS FROM EMERGING PROCESSES): 69 第六章 結論 71 參考文獻 74

    ]. WSTS Semiconductor Market Forecast Fall 2024. Retrieved from https://www.wsts.org/76/Recent-News-Release (WSTS_FC-Release-2024_11.pdf)
    [2]. Mattox, D. M. (2010). Handbook of Physical Vapor Deposition (PVD) Processing (2nd ed.). William Andrew.
    [3]. Rossnagel S. (1999). Sputter Deposition for Semiconductor Manufacturing. IBM Journal of Research and Development, 43:1-2, 163-179, Online publication date: 1-Jan-1999. https://dl.acm.org/doi/10.1147/rd.431.0163
    [4]. Innovation Forever Publishing Group Limited. (2024). Thin Film Deposition Techniques: A comprehensive review. Journal of Modern Nanotechnology, 4(6). https://doi.org/10.53964/jmn.2024006
    [5]. Li, Z., Tian, Y., Teng, C., & Cao, H. (2020). Recent Advances in Barrier Layer of Cu Interconnects. Materials, 13(21):5049. DOI:10.3390/ma13215049
    [6]. Uhm, J. W., & Jeon, H. T. (2001). TiN Diffusion Barrier Grown by Atomic Layer Deposition Method for Cu Metallization. Japanese Journal of Applied Physics, 40(7R). DOI: 10.1143/JJAP.40.4657
    [7]. Knoops, H. C. M., Baggetto, L., Langereis, E., et al. (2008). Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications. Journal of the Electrochemical Society, 155(12), G287-G294. https://doi.org/10.1149/1.2988651
    [8]. Luo, L., L. L., Kang, J., & Wen, J. (2012). Low Stress TiN as Metal Hard Mask for Advance Cu-Interconnect, ECS Transactions, 44(1), 481-486. DOI: 10.1149/1.3694357
    [9]. 〔Patent No. TW202106866A- Composition and Process for Selectively Etching a Hard Mask and/or an Etch-stop Layer in the Presence of Layers of Low-k Materials, Copper, Cobalt and/or Tungsten〕. Retrieved from https://patents.google.com/patent/TW202106866A/en
    [10]. Jones, A. C. (EDT) & Hitchman, M. L. (EDT) (2008). Chemical Vapour Deposition: Precursors, Processes and Applications. Royal Society of Chemistry. https://doi.org/10.1039/9781847558794
    [11]. Liu, X., Lu, Y. Z., & Gordon R. G. (1999). Improved Conformality of CVD Titanium Nitride Films. MRS Proceedings Library, 555,135-140. https://doi.org/10.1557/PROC-555-135
    [12]. Vasilyev V. Y. (2024). A Review -CVD/PECVD/HDP-CVD/ALD Thin Film Growth Conformality and Gap-fill Capability in High Aspect Ratio Semiconductor Device Structures: Historical Aspects, Issues, Methodology, Process Evaluation, Prospects. Novosibirsk, Russia.
    [13]. Hess, D. W., & Graves, D. B. (1989). Plasma-enhanced Etching and Deposition. In D. W. Hess & K. F. Jensen (Eds.). Microelectronics Processing: Chemical Engineering Aspects, 377-440. American Chemical Society..
    [14]. Suntola T. (1989). Atomic Layer Epitaxy. Materials Science Reports, 4(5), 261-312. https://doi.org/10.1016/S0920-2307(89)80006-4
    [15]. George, S. M. (2010). Atomic Layer Deposition: An Overview. Chemical Reviews, 110(1), 111-31. DOI: 10.1021/cr900056b
    [16]. Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-κ Gate Dielectrics: Current Status and Materials Properties Considerations. Journal of Applied Physics, 89(10), 5243–5275. DOI:10.1063/1.1361065
    [17]. Madou, M. J. (2011). Fundamentals of Microfabrication and Nanotechnology, vol. II: Manufacturing techniques for Microfabrication and Nanotechnology (3rd ed.). CRC Press. DOI: https://doi.org/10.1201/9781315274164
    [18]. Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Materials Processing (2nd ed.). Wiley-Interscience. DOI:10.1002/0471724254
    [19]. Banna, S., Agarwal, A., Cunge, G., et al. (2012). Pulsed High-density Plasmas for Advanced Dry Etching Processes. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(4). https://doi.org/10.1116/1.4716176
    [20]. Plummer, J. D., Deal, M. D., & Griffin, P. B. (2000). Silicon VLSI Technology: Fundamentals, Practice, and Modeling. Prentice Hall.
    [21]. Kelly, P. J., & Arnell, R. D. (2000). Magnetron Sputtering: A Review of Recent Developments and Applications. Vacuum, 56(3), 159–172. https://doi.org/10.1016/S0042-207X(99)00189-X
    [22]. Sproul, W. D. (1996). Physical Vapor Deposition Tool Coatings. Surface and Coatings Technology, 81(1), 1–7. https://doi.org/10.1016/0257-8972(95)02616-9
    [23]. Chapman, B. (1980). Glow Discharge Processes: Sputtering and Plasma Etching. Wiley.
    [24]. Economou, D. J. (2014). Pulsed Plasma Etching for Semiconductor Manufacturing. Journal of Physics D: Applied Physics, 47, 1–27. Doi:10.1088/0022-3727/47/30/303001
    [25]. Wang, S. B., & Wendt, A. E. (2000). Control of Ion Energy Distribution at Substrates during Plasma Processing. Journal of Applied Physics, 88, 643-646. https://doi.org/10.1063/1.373715
    [26]. Moyne, J., & Iskandar, J. (2017). Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing. Applied Materials, 5(3), 39. https://doi.org/10.3390/pr5030039
    [27]. Daim, T. U., Rueda, G., Martin, H., et al. (2006). Forecasting Emerging Technologies: Use of Bibliometrics and Patent Analysis. Technological Forecasting and Social Change, 73(8), 981-1012. https://doi.org/10.1016/j.techfore.2006.04.004
    [28]. Abbas, A., Zhang, L., & Khan, S. U. (2014). A Literature Review on the State-of-the-Art in Patent Analysis. World Patent Information, 37(1), 3-13. DOI:10.1016/j.wpi.2013.12.006
    [29]. Dhayatkar, D. (2023). How to Tame a Plasma: Power-Delivery Solutions for Top Process Issues. Thermal Processing Magazine Feb. 15. Retrieved from https://thermalprocessing.com/how-to-tame-a-plasma-power-delivery-solutions-for-top-process-issues/
    [30]. RF Parameters in Plasma: Understanding and Optimizing for Efficient Processing. Retrieved from https://www.impedans.com/docs/rf-parameters/
    [31]. Deposition | Semiconductor | Precision Power Delivery and Thermal Control Solutions | Advanced Energy | Retrieved from https://www.advancedenergy.com/en-us/applications/semiconductor/deposition/
    [32]. 同註 [24] 。
    [33]. Generators for Plasma Excitation–TRUMPF. Retrieved from https://www.trumpf.com/filestorage/TRUMPF_Master/Products/Power_Electronics/DC_plasma_excitations/TRUMPF_Plasma.pdf
    [34]. 〔Patent No. US7981306B2 - Supplying RF Power to a Plasma Process〕. Retrieved from https://patents.google.com/patent/US7981306B2/en
    [35]. 〔Patent No. European Patent Office - EP 3711080 B1 – Synchronized Pulsing of Plasma Processing Source and Substrate Bias〕 Retrieved from https://data.epo.org/publication-server/rest/v1.0/publication-dates/20230621/patents/EP3711080NWB1/document.pdf
    [36]. USPTO , CPC (Cooperative Patent Classification) Scheme - H05H - Plasma Technique; Production of Accelerated Electrically-Charged Particles , Neutrons, and Neutral Molecular or Atomic Beams. Retrieved from https://www.uspto.gov/web/patents/classification/cpc/html/cpc-H05H.html
    [37]. 〔Patent No. US20060169584A1- Physical Vapor Deposition Plasma Reactor with RF Source Power Applied to the Target〕 Retrieved from https://patents.google.com/patent/US20060169584A1/en
    [38]. Semiconductor | Advanced Energy Retrieved from https://www.advancedenergy.com/en-us/applications/semiconductor/
    [39]. TRUMPF Hüttinger Retrieved from https://www.trumpf.com/en_US/company/additional-fields-of-activity/affiliated-companies-and-other-brands/trumpf-huettinger/
    [40]. MKS Becomes #1 Market Leader in RF Power Supplies Retrieved from https://investor.mks.com/news-releases/news-release-details/mks-becomes-1-market-leader-rf-power-supplies
    [41]. Delta Electronics Inc. Assigned 'twAA/twA-1+' Ratings; Outlook Stable(2024) Retrieved from file:///C:/Users/user/Downloads/RU-Delta_Electronics_11222024_en.pdf
    [42]. Deposition | Advanced Energy Retrieved from https://www.advancedenergy.com/en-us/applications/semiconductor/deposition/
    [43]. RF Generator 1.5kW / 13.56MHz - Delta Electronics Retrieved from https://www.deltaww.com/en-US/products/High-Voltage-Power/17919
    [44]. Petrishchev, V. (2023). New Plasma Power Technologies for Next-Gen Semiconductor Manufacturing- SEMI.org. Retrieved from https://www.semi.org/en/news-media-press-releases/semi-press-releases/new-plasma-power-technologies-for-next-gen-semiconductor-manufacturing
    [45]. Mok, E. (2022). The Future of Semiconductor Manufacturing: Reflecting on the 2022 SEMI Industry Strategy Symposium. Industry News. Retrieved from https://www.advancedenergy.com/en-us/about/news/blog/the-future-of-semiconductor-manufacturing-reflecting-on-the-2022-semi-industry-strategy-symposium/
    [46]. News Center - Delta (2024). Delta Selected for the "IAM Annual Asia Intellectual Property Elite List", Recognized for Active Implementation of Its IP Strategy. Retrieved from https://www.deltaww.com/en-US/news/39485
    [47]. About AE | Advanced Energy Retrieved from https://www.advancedenergy.com/en-us/about/
    [48]. Gillespie, P. (2024). Advanced Energy's Year of Transformation. Retrieved from https://www.advancedenergy.com/getmedia/b2912bf0-ff16-4c7e-9b57-6ee7d2966956/Wrap-Up_AE_2023.pdf
    [49]. Advanced Energy Reports Fourth Quarter and Full Year 2023 Results (2024). Retrieved from https://ir.advancedenergy.com/news/advanced-energy-reports-fourth-quarter-and-full-year-2023-results/d05137bf-5947-49da-8002-e7471136957e
    [50]. Advanced Energy Reports Fourth Quarter and Full Year 2024 Results (2025). Retrieved from https://ir.advancedenergy.com/news/advanced-energy-reports-fourth-quarter-and-full-year-2024-results/05fd300a-dc13-40d4-93f2-9ed0f84bdb7e
    [51]. Paramount RF Generator - Industry-Leading, Repeatable Power Delivery for Core Plasma Applications. Retrieved from https://www.advancedenergy.com/en-us/products/plasma-power-products/rf-plasma-generators/paramount/
    [52]. Emilio, M. D. P. (2023). RF Generator for Angstrom Era Semiconductor Manufacturing. Power Electronics News. Retrieved from https://www.powerelectronicsnews.com/rf-generator-for-angstrom-era-semiconductor-manufacturing/
    [53]. 同註 [29] 。
    [54]. Advanced Energy Industries, Inc. - SEC.gov (2025). Quarterly Report Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 for the Quarterly Period Ended March 31, 2025. Retrieved from https://www.sec.gov/Archives/edgar/data/927003/000155837025005998/aeis-20250331x10q.htm
    [55]. Patents Assigned to Advanced Energy Industries, Inc. (2024). Retrieved from https://patents.justia.com/assignee/advanced-energy-industries-inc
    [56]. Advanced Energy Industries Files Patent for Bias Supply for Plasma Processing Systems with Periodic Voltage Application (2025). Power Technology. Retrieved from https://www.power-technology.com/data-insights/advanced-energy-industries-files-patent-for-bias-supply-for-plasma-processing-systems-with-periodic-voltage-application/
    [57] 〔Patent No. US9093390B2 - Conformal Oxide Dry Etch - Google Patents〕 Retrieved from https://patents.google.com/patent/US9093390B2/en
    [58]. 〔Patent No. US7381657B2 - Biased Pulse Dc Reactive Sputtering of Oxide Films〕 Retrieved from https://portal.unifiedpatents.com/patents/patent/US-7381657-B2
    [59]. Electroporation - Advanced Energy. Retrieved from https://www.advancedenergy.com/en-us/applications/medical/life-science/electroporation/
    [60]. Climer, J. (2025). Top Trends and Highlights from APEC 2025 - Advanced Energy. Retrieved from https://www.advancedenergy.com/en-us/about/news/blog/top-trends-and-highlights-from-apec-2025/
    [61]. Press Releases (2025). TRUMPF Receives Supplier Excellence Award from Applied Materials. Retrieved from https://www.trumpf.com/en_US/newsroom/local-press-releases/press-release-detail-page/release/trumpf-receives-supplier-excellence-award-from-applied-materials-9188/
    [62]. Press Releases (2023). TRUMPF Group Sales Revenues up 27 Percent in Anniversary Year / Record Sales for North American Business. Retrieved from https://shopmetaltech.com/fabricating/trumpf-group-sales-revenues-up-27-in-anniversary-year/
    [63] Press Releases (2022). Ahead-TRUMPF Annual Report for 2021/2022. Retrieved from https://www.trumpf.com/filestorage/TRUMPF_Master/Corporate/Annual_report/Archive/TRUMPF-Annual-Report-2021-2022.pdf
    [64]. QYResearch (2024). RF Power Supply for Semiconductor - Global Market Share and Ranking, Overall Sales and Demand Forecast 2024-2030. Retrieved from
    https://www.qyresearch.com/reports/2659422/rf-power-supply-for-semiconductor
    [65]. TruPlasma RF Series 3000 – TRUMPF Retrieved from https://www.trumpf.com/en_US/products/power-electronics/plasma-excitation/truplasma-rf-series-3000/
    [66]. TruPlasma RF Series 1000 / 3000 (G2/13) – TRUMPF Retrieved from https://www.trumpf.com/en_US/products/power-electronics/plasma-excitation/truplasma-rf-series-1000-3000-g2-13/
    [67]. DC Generators TruPlasma DC Series 3000 (G2)–TRUMPF Retrieved from https://www.trumpf.com/en_US/products/power-electronics/plasma-excitation/truplasma-dc-series-3000-g2/
    [68]. TruPlasma Bipolar Series (G2.1) – TRUMPF Retrieved from https://www.trumpf.com/en_INT/products/power-electronics/plasma-excitation/truplasma-bipolar-series-g21/
    [69]. TruPlasma Bipolar Series 4000 (G2.1) –TRUMPF Retrieved from https://www.trumpf.com/en_US/products/power-electronics/plasma-excitation/truplasma-bipolar-series-g21/
    [70]. 同註 [67] 。
    [71]. Pioneering Technologies. Our Standard. Powerful down to the Smallest Detail. – TRUMPF Retrieved from https://www.trumpf.com/filestorage/TRUMPF_Master/Products/Services/Delta_Electronics/TRUMPF_Services_Electronics__Individual_heating_solution.pdf
    [72]. 〔Patent No. US7981306B2 - Supplying RF Power to a Plasma Process〕 Retrieved from https://patents.google.com/patent/US7981306B2/en
    [73] 〔Patent No. US7795817B2 - Controlled Plasma Power Supply〕 Retrieved from https://patents.google.com/patent/US7795817B2/en
    [74]. 〔Patent No. US6472822B1 - Pulsed Rf Power Delivery for Plasma Processing〕 Retrieved from https://patents.google.com/patent/US6472822B1/en
    [75]. Patents Assigned to TRUMPF Huettinger Sp. z.o.o. Retrieved from https://patents.justia.com/assignee/trumpf-huettinger-sp-z-o-o
    [76]. MKS Instruments Investor Relations- MKS Inc. Retrieved from https://investor.mks.com/
    [77]. Press Releases (2019). MKS Instruments Announces Closing of Electro Scientific Industries Acquisition. Retrieved from https://www.mks.com/pr/esi-acquisition-closing1
    [78]. Annual Report 2021. MKS Instruments, Inc. Retrieved from https://www.annualreports.com/HostedData/AnnualReportArchive/m/NASDAQ_MKSI_2021.pdf
    [79]. Globe Newswire (2022). MKS Instruments Reports Fourth Quarter And Full Year 2021 Financial Results. MKS Instruments, Inc. Retrieved from https://www.globenewswire.com/news-release/2022/01/26/2373855/16396/en/MKS-Instruments-Reports-Fourth-Quarter-And-Full-Year-2021-Financial-Results.html
    [80]. Globe Newswire (2025). MKS Instruments Reports Fourth Quarter and Full-Year 2024 Financial Results. MKS Instruments, Inc. Retrieved from https://www.globenewswire.com/news-release/2025/01/21/3012604/16396/en/MKS-Instruments-Announces-Fourth-Quarter-Full-Year-2024-Earnings-Conference-Call.html
    [81]. RF Power Generator - MKS Instruments , Inc. Retrieved from https://www.mks.com/c/rf-power-generators
    [82]. MKS Instruments, Inc. Spectroscopy Online (2017). Spectroscopy,32(12), p5. Retrieved from https://www.spectroscopyonline.com/view/mks-instruments-inc
    [83] MKS Instruments, Inc. Inventions, Patents and Patent Applications. Retrieved from https://www.mks.com/patents & https://uspto.report/company/Mks-Instruments-Inc/patents
    [84]. RF Plasma Generators Market Report | Global Forecast From 2024 To 2032.–Dataintelo. Retrieved from https://dataintelo.com/report/global-rf-plasma-generators-market
    [85] About Delta - Delta Profile. Retrieved from https://www.deltaww.com/en-US/about/Delta-Profile
    [86]. Investors – 2024 Chairman's Statement - Delta Electronics. Retrieved from https://www.deltaww.com/en-US/investors/statement
    [87]. Semiconductor Chemical Vapor Deposition Process - Solutions - Electronics – Delta Electronics. Retrieved from https://www.deltaww.com/en-us/solutions/Electronics/Semiconductor-Chemical-Vapor-Deposition-Process
    [88]. Triple Win for Delta High-frequency High-power UPS Selected by Major Chinese Semiconductor Companies - Delta Electronics. Retrieved from https://www.deltapowersolutions.com/en/mcis/success-story-triple-win-for-delta-high-frequency-high-power-ups-selected-by-major-chinese-semiconductor-companies.php
    [89]. Pulsed DC Power Supply 10kW / 1000V - Delta Electronics. Retrieved from https://www.deltaww.com/en-US/products/High-Voltage-Power/17915
    [90]. Products - High Voltage Power - Delta Electronics. Retrieved from https://www.deltaww.com/en-US/products/High-Voltage-Power/ALL/
    [91]. Press Releases (2025). Delta Honored Among Clarivate's Global Top 100 Innovators for the Fourth Consecutive Year. Retrieved from https://www.deltaww.com/en-US/news/39624
    [92]. Data Insights (2023). Delta Electronics Gets Grant for Power Converter with Alternating Enabling and Disabling of Switches- Verdict. Retrieved from https://www.verdict.co.uk/delta-electronics-gets-grant-for-power-converter-with-alternating-enabling-and-disabling-of-switches/
    [93] Data Insights (2024). Delta Electronics Gets Grant for Isolated Resonant DC/DC Converter with Improved Control Method - Verdict. Retrieved from https://www.verdict.co.uk/delta-electronics-gets-grant-for-isolated-resonant-dc-dc-converter-with-improved-control-method/
    [94]. Press Releases (2025). Delta Demonstrates How its AI-Enabled Solutions Foster Intelligent Industries and Sustainable Energy Transition at Hannover Messe 2025- Delta Electronics. Retrieved from https://www.deltaww.com/en-us/news/39647
    [95]. Pieper, R. (2024). Delta's Grid-to-Chip Power Solutions to Optimize the Energy Efficiency of AI Data Centers-COMPUTEX 2024. Retrieved from https://www.youtube.com/watch?v=jaOToWMWQ0g
    [96]. Press Releases (2025). Delta Unveils Next-generation Power and Cooling Solutions for AI Data Centers at NVIDIA GTC 2025-Delta Electronics. Retrieved from https://www.deltaww.com/en-us/news/39632
    [97]. Microelectronics (2025). More Players Exhibiting a Common IP Strategy for Power and RF GaN Technologies. Retrieved from https://www.semiconductor-today.com/news_items/2023/dec/knowmade2-111223.shtml
    [98]. Research Nester (2025). Power Semiconductor Market Size & Share - Growth Analysis 2037. Retrieved from https://www.researchnester.com/reports/power-semiconductor-market/7303
    [99]. Press Releases (2023). Delta to Demonstrate its Smart Solutions for Semiconductor Manufacturing at SEMICON Taiwan 2023 with its U.S. -Based Subsidiary Universal Instruments -Delta Electronics. Retrieved from https://www.deltaww.com/en-us/news/38670
    [100]. MKS Instruments, Inc. Enabling Technologies that Transform Our World. Retrieved from https://www.mks.com/
    [101]. Lee, J. & Hong, S. (2021). Dual-Frequency RF Impedance Matching Circuits for Semiconductor Plasma Etch Equipment. Electronics 10(17), 2074. Retrieved from https://doi.org/10.3390/electronics10172074
    [102]. IES (2024). Fine-Tuning for the Future: Enhancing Plasma Processes with Impedance Matching Networks - IES Technical Sales. Retrieved from https://iestechsales.com/blog/fine-tuning-for-the-future-enhancing-plasma-processes
    [103] Shin, D. & Hong, S. (2023). Improved Impedance Matching Speed with Gradient Descent for Advanced RF Plasma System. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 41(6). DOI:10.1116/6.0003034
    [104]. Business Wire (2024). Advanced Energy's New Impedance Matching Network Provides Ultra-Fast, RF-Synchronized Tuning to Multilevel Pulse States - Advanced Energy Industries, Inc. Retrieved from https://ir.advancedenergy.com/news/advanced-energys-new-impedance-matching-network-provides-ultra-fast-rf-synchronized-tuning-to-multilevel-pulse-states/1fe927cf-1966-4fd7-8a8f-9f5ad79b9eeb
    [105]. DRex Blogs (2025). How Plasma Power Technology Revolutionizes Semiconductor Manufacturing-DRex Electronics. Retrieved from https://www.icdrex.com/how-plasma-power-technology-revolutionizes-semiconductor-manufacturing/
    [106]. Chen, Y.L., Sacchi, S., Dey, B., et al. (2024). Exploring Machine Learning for Semiconductor Process Optimization: A Systematic Review. TechRxiv. DOI:10.36227/techrxiv.172114788.85190557/v1
    [107]. Trieschmann, J., Vialetto, L., & Gergs, T. (2023). Review: Machine Learning for Advancing Low-temperature Plasma Modeling and Simulation. Retrieved from https://arxiv.org/html/2307.00131v2
    [108]. PARAMOUNT® Plus Pulsed-RF Power Supplies - Advanced Energy Industries, Inc. Retrieved from https://www.advancedenergy.com/getmedia/e5a58a62-832f-4d54-8689-d3d8c1e76136/paramount-plus-data-sheet.pdf
    [109]. Petrishchev, V. (2023). New Plasma Power Technologies For Next-Gen Semiconductor Manufacturing. Retrieved from https://semiengineering.com/new-plasma-power-technologies-for-next-gen-semiconductor-manufacturing/
    [110]. Keshri, M. K.(2025). Scaling Use of Machine Learning & Artificial Intelligence in Semiconductor Industry. International Journal Science and Technology,16(1). DOI:10.71097/IJSAT.v16.i1.2973
    [111]. Fiveable (2024). 6.3 Chemical Vapor Deposition and Atomic Layer Deposition -Nanoelectronics and Nanofabrication Class Notes. Edited by Becky Bahr, Fiveable. https://library.fiveable.me/nanoelectronics-and-nanofabrication/unit-6/chemical-vapor-deposition-atomic-layer-deposition/study-guide/N2CyI2t81MP35tON.
    [112]. Deposition - Semiconductor Processing – HORIBA. Retrieved from https://www.horiba.com/usa/semiconductor/process/deposition/
    [113]. Oehrlein, G. S., Brandstadter, S.M., Bruce, R. L., et al. (2024). Future of Plasma Etching for Microelectronics: Challenges and Opportunities - AIP Publishing. Journal of Vacuum Science & Technology B, 42, 041501. https://doi.org/10.1116/6.0003579
    [114]. Sun, L., Lyu, P., Zhang, X., et al. (2024). Machine Learning Technologies for Semiconductor Manufacturing. 2024 Conference of Science and Technology for Integrated Circuits (CSTIC), 1-7. DOI:10.1109/CSTIC61820.2024.10532076
    [115]. Lee, T., Chen, P., Huang, C., et al. (2025). Advances in Core Technologies for Semiconductor Manufacturing: Applications and Challenges of Atomic Layer Etching, Neutral Beam Etching and Atomic Layer Deposition. Nanoscale Advances(RSC Publishing), 10, 2796-2817. DOI: 10.1039/D4NA00784K

    QR CODE
    :::