跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡欣廣
JIAN,XIN-GUANG
論文名稱: 低放射性盛裝容器混凝土受硫酸鹽侵蝕之劣化模式與服務年限探討
Study on the deterioration mode and service life of radioactive container concrete subjected to sulfate attack
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 131
中文關鍵詞: 硫酸鹽侵蝕劣化分析混凝土高完整性容器
外文關鍵詞: sulfate attack, deterioration analysis, engineered barrier
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對台電公司現行耐用100年之低放射性廢棄物盛裝容器(High Integrity Container, HIC)混凝土配比,探討其抵抗硫酸鹽侵襲之能力,透過國際文獻研析掌握混凝土受硫酸鹽侵襲引致之劣化機制及分析模式,進行關鍵因子與參數之影響效應評估,藉以建立混凝土容器受硫酸鹽侵襲之劣化模擬方法,供混凝土容器評估之參考依據。研究內容包括:(1)研析國內外有關混凝土受硫酸鹽侵襲劣化機制及劣化模式相關文獻;(2)評估混凝土材質容器受硫酸鹽侵蝕之劣化模式(CONCLIFE、SULFATE2、Atkinson力學模式、抗壓強度預估模式)及其重要影響參數(擴散係數、吸水率、孔隙率、抗拉強度);(3)提出適用於高完整性容器混凝土受硫酸鹽侵襲之劣化分析方法及使用劣化推估模式。
    為獲得各模式所需輸入參數,本研究依據ASTM C1585進行吸水率試驗並於養護齡期90天、180天、270天進行測定,與ASTM C1556硫酸鹽擴散濃度剖面試驗根據硫酸鹽溶液於浸泡齡期28天、90天、180天、270天、360天進行測定,量測混凝土吸水深度與硫酸根離子分佈,進而迴歸計算吸水率與擴散係數。SULFATE2模擬中之孔隙率參數則以實測數據進行比對修正,進一步提升參數代表性與模擬精度。
    研究成果應用於模擬混凝土高完整性容器受硫酸鹽侵襲產生之劣化,推估其劣化速率,CONCLIFE模式與SULFATE2開裂前緣分析因適用環境與HIC容器處置條件較不一致,故建議使用SULFATE2中之擴散濃度剖面分析並配合文獻進行抗壓強度預測。就抵抗硫酸鹽侵襲能力而言,經過多種方法模擬HIC混凝土皆可符合「低放射性廢棄物最終處置及其設施安全管理規則」針對B、C類低放射性廢棄物耐用300年之要求。


    This study investigates the concrete mix design currently adopted by Taiwan Power Company (TPC) for High Integrity Containers (HIC), which are designed for a service life of 100 years and are used for storing low-level radioactive waste. The objective is to evaluate their resistance to sulfate attack. By reviewing international literature, the degradation mechanisms and analytical models related to sulfate-induced concrete deterioration were examined. The study evaluates the effects of key factors and parameters to establish a simulation methodology for predicting the degradation of concrete containers under sulfate exposure, providing a reference framework for container performance assessment. The scope of this study includes: (1) reviewing domestic and international literature on sulfate attack mechanisms and concrete degradation models; (2) assessing relevant deterioration models for concrete containers (CONCLIFE, SULFATE2, Atkinson mechanical model, and compressive strength prediction models), along with critical parameters such as diffusion coefficient, sorptivity, and porosity; and (3) proposing a deterioration analysis approach and predictive modeling method suitable for HIC concrete under sulfate exposure.
    To acquire input parameters for each model, water sorptivity tests were performed in accordance with ASTM C1585 at curing ages of 90, 180, and 270 days. Sulfate ion concentration profiles were obtained based on ASTM C1556, with immersion durations of 28, 90, 180, 270, and 360 days. Measurements of water absorption depth and sulfate ion distribution were used to calculate sorptivity and diffusion coefficients through regression analysis. The porosity parameter used in SULFATE2 simulations was calibrated with experimental data to enhance its representativeness and improve simulation accuracy.
    The research results were applied to simulate the degradation behavior of HIC concrete under sulfate exposure and estimate its deterioration rate. Since the crack-front analysis results of the CONCLIFE and SULFATE2 models are not fully consistent with the actual disposal environment and conditions of HICs, it is recommended to adopt sulfate concentration profile analysis from SULFATE2, combined with compressive strength prediction methods from literature. Simulation results from various models indicate that the HIC concrete meets the durability requirement of 300 years for Class B and Class C low-level radioactive waste, as stipulated in the “Regulations on the Final Disposal and Safety Management of Low-Level Radioactive Waste.”

    目錄 摘要 I 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1. 低放射性廢棄物 4 2.1.1 何謂低放射性廢棄物 4 2.1.2 低放射性廢棄物最終處置案例 4 2.2. 硫酸鹽侵蝕 11 2.2.1 硫酸鹽侵蝕機理 11 2.2.2 孔隙率對硫酸鹽侵蝕之影響 13 2.2.3 鋼纖維對硫酸鹽侵蝕影響 14 2.3. 受硫酸鹽侵蝕混凝土劣化指標 16 2.4. 離子傳輸模式 18 2.4.1 傳輸模式簡介 18 2.4.2 擴散係數 19 2.5. 歷史數據回顧 22 2.5.1 HIC混凝土硫酸根離子擴散濃度剖面數據 22 2.5.2 長度變化實驗數據 23 2.6. CONCLIFE軟體簡介 25 2.6.1 簡單模式之吸水率分析方法: 25 2.6.2 複雜模式之吸水率分析方法: 26 2.6.3 Atkinson力學模型 28 2.6.4 鈣礬石濃度計算方法 29 2.6.5 CONCLIFE破壞評估方式 30 2.7. SULFATE2軟體簡介 30 2.7.1 SULFATE2膨脹模式 31 2.7.2 SULFATE2膨脹對彈性模數之影響 32 2.7.3 SULFATE2擴散係數模擬 34 2.7.4 SULFATE2內部化學反應機制 35 2.7.5 SULFATE2二維模型(2D Case)計算 36 2.7.6 硫酸鹽侵蝕抗壓強度預測 37 第三章 實驗規劃 41 3.1 實驗材料 41 3.2 實驗設備 47 3.3 實驗內容與方法 49 3.3.1 研究流程 49 3.3.2 研究變數 51 3.3.3 實驗方法 56 第四章 結果與討論 63 4.1 模式分析 63 4.1.1 CONCLIFE模式分析 63 4.1.2 SULFATE2模式分析 64 4.1.3 模式限制與分析方法 65 4.2 實驗結果分析 67 4.2.1 吸水試驗結果 67 4.2.2 硫酸鹽擴散濃度剖面試驗結果分析 69 4.2.3 孔隙率分析結果與模式修改 73 4.3 模式基礎輸入參數 76 4.4 敏感性分析 77 4.4.1 CONCLIFE吸水率敏感性分析 78 4.4.2 SULFATE2擴散係數敏感性分析 79 4.4.3 SULFATE抗拉強度敏感性分析 81 4.4.4 孔隙率敏感性分析 82 4.5 模式驗證 84 4.5.1 長度變化試驗模擬 84 4.5.2 濃度剖面試驗模擬 87 4.6 模式劣化推估 89 4.6.1 CONCLIFE開裂服務年限分析 90 4.6.2 SULFATE2濃度剖面服務年限分析 93 4.6.3 Atkinson力學模型開裂服務年限分析 94 4.6.4 HIC力學性能劣化預測 95 4.7 硫酸鹽侵蝕模式分析 101 4.7.1 SULFATE2擴散係數模擬比較 101 4.7.2 硫酸根離子與氯離子擴散模式比較 102 第五章 結論 105 參考文獻 107 附錄 111

    環境部全國環境水質監測資訊網: https://wq.moenv.gov.tw/EWQP/zh/EnvWaterMonitoring/Groundwater.aspx
    環境部空氣品質改善維護資訊網:
    https://air.moenv.gov.tw/envtopics/AirQuality_4.aspx
    台灣電力公司,低放射性廢棄物最終處置技術精進計畫低放射性廢棄物最終處置建議候選場址處置設計與工程技術報告 (2021)
    行政院核能安全委員會,法國低放射性廢棄物最終處置場 (2016)
    行政院核能安全委員會,美國低放射性廢棄物最終處置場 (2025)
    行政院核能安全委員會,日本低放射性廢棄物最終處置場 (2016)
    行政院核能安全委員會,英國低放射性廢棄物最終處置場 (2021)
    行政院核能安全委員會,西班牙低放射性廢棄物最終處置場 (2021)
    吳清哲,「低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估」,國立中央大學土木研究所,(2006)
    吳桂卿,「不同養護溫度條件 對提升障壁混凝土品質之成效」,國立中央大學土木研究所,中壢(2016)
    吳明福,「高完整性盛裝容器用活性粉混凝土配比及工程性質試驗研究」,國立中央大學土木研究所,中壢(2021)
    張哲維,「工程障壁混凝土受硫酸鹽侵襲之劣化行為及速率推估」,國立中央大學土木研究所,中壢(2014)
    陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,國立中央大學土木研究所,中壢(2015)
    藍世文、楊仲家、卓世偉、劉文欽、江慶堂、翁在龍(2006)。混凝土中氯離子擴散基本試驗法探討,國立台灣海洋大學材料工程研究所。
    彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」國立中央大學土木研究所,中壢(2015)
    湯海昌,「硫酸鹽侵蚀下混凝土的耐久性分析」,碩士論文,南京理工大,中國(2008)。
    ASTM C1585 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes, ASTM International, West Conshohocken, PA, USA.
    ASTM C1556 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion, ASTM International, West Conshohocken, PA, USA.
    ASTM C1012 Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution, ASTM International, West Conshohocken, PA, USA.
    ASTM C642-21 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
    ASTM C114 Standard Test Method for Chemical Analysis of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
    AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
    AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
    Atkinson, A., & Hearne, J. A. (1989). Mechanistic model for the durability of concrete barriers exposed to sulphate-bearing groundwaters. MRS Online Proceedings Library (OPL), Vol. 176, pp. 149-155.
    Bentz, D. P., Clifton, J. R., Ferraris, C. F., Garboczi, E. J., & Torrents, J. M. (1999). Transport properties and durability of concrete: Literature review and research plan.
    Bentz, D. P., Ehlen, M. A., Ferraris, C. F., & Winpigler, J. A. (2002). Service Life Prediction Based on Sorptivity for Highway Concrete Exposed to Sulfate Attack and Freeze-Thaw Conditions (No. FHWA-RD-01-162). United States. Federal Highway Administration. Office of Infrastructure Research and Development.
    Cheng, H., Liu, T., Zou, D., & Zhou, A. (2021). Compressive strength assessment of sulfate-attacked concrete by using sulfate ions distributions. Construction and Building Materials, 293, 123550
    Diamond, S. (1999). Aspects of concrete porosity revisited. Cement and Concrete Research, 29(8), 1181-1188.
    Haufe, J., & Vollpracht, A. (2019). Tensile strength of concrete exposed to sulfate attack. Cement and Concrete Research, 116, 81-88.
    Höglund, L. O. (1992). Some notes of ettringite formation in cementitous materials; influence of hydration and thermodynamic constraints for durability. Cement and concrete research, 22(2-3), 217-228.
    Hassan, A. M. T., Jones, S. W., and Mahmud, G. H. (2012). “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC).” Construction and Building Materials, Vol. 37, pp. 874-882.
    Johannesson, B. F. (1999). Diffusion of a mixture of cations and anions dissolved in water. Cement and Concrete Research, 29(8), 1261-1270.
    Johansson, N. (2005). Uttorkning av betong: inverkan av cementtyp, betongkvalitet och omgivande fuktförhållanden.
    Lagerblad, B. (1998). Long term test of concrete resistance against sulphate attack. In Seminar on Sulfate Attack Mechanisms ,pp. 325-336.
    Ouyang, C., Nanni, A., & Chang, W. F. (1988). Internal and external sources of sulfate ions in Portland cement mortar: two types of chemical attack. Cement and concrete research, 18(5), 699-709.
    Stanish, K., & Thomas, M. (2003). The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients. Cement and concrete research, 33(1), 55-62.
    Sun, D., Huang, C., Cao, Z., Wu, K., & Zhang, L. (2021). Reliability assessment of concrete under external sulfate attack. Case Studies in Construction Materials, 15, e00690.
    Tixier, R., & Mobasher, B. (2003). Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. Journal of materials in civil engineering, 15(4), 305-313.
    Tixier, R., & Mobasher, B. (2003). Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. Journal of materials in civil engineering, 15(4), 314-322.
    Tran, N. T., Tran, T. K., and Kim, D. J. (2015). “High rate response of ultra-high performance fiber-reinforced concretes under direct tension.” Cement and concrete composites, Vol. 69, pp. 72-87.

    QR CODE
    :::