跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉韋志
Wei-chih Liu
論文名稱: 發光二極體一階封裝散熱銅基板暫態熱阻量測與研究
Study of thermal transient measurement of first-level Cu substrate used in LEDs
指導教授: 鐘德元

劉正毓
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 67
中文關鍵詞: 暫態熱阻量測發光二極體一階封裝散熱銅基板熱阻
外文關鍵詞: thermal transient measurement, light emitting diode, first-level Cu substrate, thermal resistance
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建立一套暫態熱阻量測系統(thermal transient measurement)來探討發光二極體一階封裝的熱傳行為。暫態熱阻量測系統包含自動化量測系統與量測結果之數值分析處理,皆以JESD51-1與JESD51-14為量測與分析的基準。藉由量測發光二極體的降溫暫態響應,可得結構方程式,由此間接得知熱流在發光二極體封裝體內的行為,包含熱流之等效等溫面面積與其在熱傳路徑上的分佈與位置,由等溫面之間的關係定義熱阻值,進而得知各材料層的熱阻。本研究藉由發展出的暫態熱阻量測系統分析高亮度GaN-based 發光二極體封裝於不同尺寸的銅散熱基板之熱阻,銅基板包含直徑與厚度的變化,藉由結構方程式的結果,將銅基板到heat sink的熱阻分成兩部分,第一部分為熱流在基板內從晶片下方放射狀傳遞的區域,為基板的主要熱阻RsubP;第二部分為接續第一部分末的等溫面到heat sink與環境界面的等溫面間的熱阻,為基板後端經散熱膏層到heat sink之總合熱阻RαGS。相同厚度的基板,直徑的變化對RsubP沒有顯著影響;因散熱膏在小直徑基板與heat sink 間具有較好的接觸,因此散熱膏層的熱阻較小,但大直徑基板具有較好的熱擴散效應,此兩種效應交互影響RαGS。同直徑的基板,RsubP與基板厚度成正比關係,等溫面面積亦快速擴散,因此RαGS隨基板厚度增加快速遞減,使得整體熱阻RSGS (RsubP + RαGS)有效下降;當基板厚度過大時,RαGS遞減趨勢大幅減緩,熱流在基板內的擴散效應達到飽和,過厚的基板增加一維熱阻,反造成RSGS增加。


    This study discusses the thermal transient measurement of first-level Cu substrate used in high-brightness LEDs. In the Chapter 3, the thermal transient measurement is introduced. The thermal transient measurement contains an automatic measurement system and a data processing system, and both of them are based on JESD51-1 and JESD51-14 standards. Measuring the transient variety of the junction temperature can obtain the structure function. The structure function indirectly shows the behavior of the heat flow in the LED package that includes the cross-sectional area of isothermal surface and its distribution. The thermal resistance of each layer is defined by the relationship between the isothermal surfaces. In the Chapter 4, the thermal performance of a series of Cu substrates with different geometric shapes is investigated by the present thermal transient measurement. The thermal resistance from the Cu substrate to the heat sink can be divided into two parts as the result of the structure function. The first part is the main thermal resistance of Cu substrate (RsubP) that is the radial transmission region of the heat flow from the top substrate to the bottom. The second part is the sum of the thermal resistance (RαGS) that includes the remaining Cu substrate, the thermal grease layer, and the heat sink. The varying sizes of diameters would not influence the RsubP obviously. Smaller substrates have lower thermal resistance of thermal grease layer, but the bigger substrates have better spreading effect. These two effects interact with the RαGS. The RsubP is proportional to the thickness of the substrate with the same diameter, and the cross-sectional area spreads effectively with the increasing thickness of the substrate. Therefore, the RαGS decreases rapidly with the thickness of the substrate, then, the sum of the thermal resistance (RSGS = RsubP + RαGS) reduces effectively. Nevertheless, if the substrate is too thick, the spreading effect approaches the saturation, then, the thick substrate adds the one-dimensional thermal resistance that also increases the RSGS.

    摘要 i Abstract ii 誌謝 iii Table of contents iv List of figures vi Chapter 1 Introduction 1 1-1 Introduction of thermal issue in high-brightness LED package 1 1-2 Introduction of measurement methods of LEDs thermal resistance 3 1-2-1 Traditional measurement methods 3 1-2-2 Thermal transient measurement 4 Chapter 2 Motivation 6 Chapter 3 Theory, and Experimental apparatus and measurements 8 3-1 Theory of thermal transient measurement and modeling 8 3-1-1 Time-constant spectrum 8 3-1-2 Cumulative structure function (Protonotarios-Wing function) 13 3-1-3 Structure function 15 3-2 Obtaining the structure functions from unit step thermal response functions 17 3-2-1 Calculating the time constant spectrum by deconvolution method 17 3-2-2 Noise processing 18 3-2-3 Transferring Foster RC network to Cauer RC network 20 3-3 Experiment apparatus and measurements 22 3-3-1 Specifications of the studied LEDs 22 3-3-2 Junction temperature measurement by the forward-voltage method 24 3-3-3 Thermal resistance measurement in high-brightness LED by thermal transient measurement 26 Chapter 4 Experimental results and discussions 28 4-1 Principle of the heat flow behavior in the studied LEDs 28 4-2 Thermal effect of the different geometric size of Cu substrates 33 4-2-1 Thermal effect of the diameters of Cu substrates 33 4-2-2 Thermal effect of the thicknesses of Cu substrates 43 4-3 Comprehensive discussion 46 Chapter 5 Conclusion 50 References 51

    [1] M. D. Lago, M. Meneghini, N. Trivellin, G. Meneghesso, and E. Zanoni, “Degradation mechanisms of high-power white LEDs activated by current and temperature”, Microelectron. Reliab., Vol 51, pp. 1742-1746, July 2011.
    [2] Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs”, IEEE Trans. Compon. Pack. Manuf. Technol., Vol 33, pp. 761-766, December 2010.
    [3] P. T. Chung, C. T. Yang, S. H. Wang, C. W. Chen, A. Chiang, and C. Y. Liu, “ZrO2/epoxy nanocomposite for LED encapsulation”, Mater. Chen. Phys., Vol 136, pp. 868-876, September 2012.
    [4] C. T. Yang, “Study of thermal resistance measurement of first-level Cu substrate and the anelastic behavior in GaN-based LED”, National Central University, Doctoral dissertation, June 2013.
    [5] O. Kuckmann, “High power LED arrays special requirements on packaging technology”, Proc. SPIE 6134, Light-Emitting Diodes: Research, Manufacturing, and Applications X, pp. 613404, San Jose, CA, United States, February 2006.
    [6] H. Dieker, C. Miesner, D. Puttjer, and B. Bachl, “Comparison of different LED packages”, Proc. SPIE 6797, Manufacturing LEDs for Lighting and Displays, pp. 679701, Berlin, Germany, September 2007.
    [7] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett., Vol 85, pp. 2163-2165, September 2004.
    [8] B. Siegal, “Measurement of junction temperature confirms package thermal design”, Laser Focus World, November 2003.
    [9] V. Székely and T. V. Bien, “Fine structure of heat flow path in semiconductor devices: a measurement and identification method”, Solid-State Electron., Vol 31, pp. 1363-1368, February 1988.
    [10] H. H. Kim, S. H. Choi, S. H. Shin, Y. K. Lee, S. M. Choi, and S. Yi, “Thermal transient characteristics of die attach in high power LED PKG”, Microelectron. Reliab., Vol 48, pp. 445-454, March 2008.
    [11] L. Kim and M. W. Shin, “Thermal Resistance Measurement of LED Package with Multichips”, IEEE Trans. Compon. Pack. Manuf. Technol., Vol 30, pp. 632-636, December 2007.
    [12] L. Yang, J. Hu, L. Kim, and M. W. Shin, “Thermal Analysis of GaN-Based Light Emitting Diodes With Different Chip Sizes”, IEEE Trans. Device Mater. Reliab., Vol 8, pp. 571-575, September 2008.
    [13] K. S. Yang, C. H. Chung, C. W. Tu, C. C. Wong, T. Y. Yang, and M. T. Lee, “Thermal spreading resistance characteristics of a high power light emitting diode module”, Appl. Therm. Eng., Vol 70, pp. 361-368, September 2014.
    [14] EIA/JEDEC Standard, “EIA/JESD51-1 Integrated Circuits Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device)”, 1995.
    [15] JEDEC Standard, “JESD 51-14 Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction to Case of Semiconductor Devices with Heat Flow Through a Single Path”, 2010.
    [16] V. Székely, “On the representation of infinite-length distributed RC one-ports”, IEEE Trans. Circuits Syst., Vol 38, pp. 711-719, July 1991.
    [17] V. Székely and Wai-Kai Chen (Ed.), “Distributed RC networks”, The Circuits and Filters Handbook, Boca Raton: CRC Press Inc., pp. 1201-1222, New York, 2003.
    [18] V. Székely and M. Rencz, “Thermal Dynamics and the Time Constant Domain”, IEEE Trans. Compon. Pack. Manuf. Technol., Vol 23, pp. 587-594, September 2000.
    [19] E. N. Protonotarios and O. Wing, “Theory of nonuniform RC lines”, IEEE Transactions on Circuit Theory, Vol 14, pp. 2-20, March 1967.
    [20] M. Rencz and V. Székely, “Structure Function Evaluation of Stacked Dies”, 20th annual IEEE semiconductor thermal measurement and management symposium, pp. 50-54, March 2004.
    [21] A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “High power light-emitting diode junction temperature determination from current-voltage characteristics”, J. Appl. Phys., Vol 104, pp. 093104, September 2008.
    [22] Y. Wang, H. Xu, S. Alur, Y. Sharma, A. J. Cheng, K. Kang, R. Josefsberg, M. Park, S. Sakhawat, A. N. Guha, O. Akpa, S. Akavaram, and K. Das, “In Situ Temperature Measurement of GaN-Based Ultraviolet Light-Emitting Diodes by Micro-Raman Spectroscopy”, J. Electron. Mater., Vol 39, pp. 2448-2451, September 2010.
    [23] Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, J. K. Kim, and E. F. Schubert, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods”, Appl. Phys. Lett., Vol 86, pp. 31907, January 2005.
    [24] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method”, Appl. Phys. Lett., Vol 85, pp. 2163-2165, September 2004.
    [25] J. Park, M. W. Shin, and C. C. Lee, “Measurement of temperature profiles on visible light-emitting diodes by use of a nematic liquid crystal and an infrared laser”, Opt. Lett., Vol 29, pp. 2656-2658, November 2004.
    [26] J. Cho, C. Sone1, Y. Park1, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift”, Phys. Stat. Sol., Vol 202, pp.1869-1873, July 2005.
    [27] S. Song, S. Lee, and V. Au, “Closed-Form Equation for Thermal Constriction/Spreading Resistances with Variable Resistance Boundary Condition”, 1994 IEPS Conference, pp. 111-121, 1994.

    QR CODE
    :::