| 研究生: |
簡佑軒 Yu-Hsuan Chien |
|---|---|
| 論文名稱: |
仿乳腫瘤特徵之近紅外光頻域式量測系統分析與驗證 |
| 指導教授: | 潘敏俊 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 近紅外光擴散光學造影 、頻域式量測系統 、幅值調變 、腫瘤篩檢 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近紅外光擴散光學斷層掃描呈像系統,利用近紅外光入射組織,擷取近紅外光穿透組織之光強度變化,並藉反算重建組織內部之光學係數影像,基於個別組織之光學特性差異,用以區別腫瘤與正常組織。
本系統以雷射產生強度調變光源,進入仿體經介質吸收及散射後,藉由光電倍增管偵測調變光訊號變化,以光能量大小及相位差進行影像反算。為評估所發展頻域式量測系統對腫瘤(置入物)在仿體或真實組織中呈像之有效及精確性,在仿體量測中以12個不同仿體設計參數案例,進行影像反算,依誤差百分比評估不同設計參數對光學係數影像特徵之影響。研究中亦進行動物實驗,對施打人類乳房腫瘤細胞之小鼠進行量測,探討系統對實際生理組織之量測及呈像效果。
根據研究顯示,本系統對於仿體量測,置入物直徑超過仿體大小六分之一均能有效檢測;而對於小鼠組織量測,小鼠背部皮下組織存在腫瘤與正常小鼠之量測特徵及造影結果,均有顯著差異,且與實際腫瘤位置相仿。本研究所開發之頻域量測系統對於仿體組織之置入物篩檢具確效性,而小鼠組織之量測及影像反算,端賴掃描斷面背景光學係數影響腫瘤特性而異。
Near-infrared diffuse optical imaging uses near-infrared light to illuminate tissue and reconstruct the optical-property images of the tissue through inverse computation using measured transmission light. Due to different characteristics of optical properties, tumor tissue can be distinguished from normal one by the reconstructed images.
Our developed imaging system produces and directed intensity-modulated light into the phantom. We measure the absorbed and scattered light transmitted through the phantom by using PMT and then reconstruct the optical-property images. To evaluate our frequency domain imaging system under condition of inclusion (tumor) embedded in the phantom, we use 12 synthetic cases with different design parameters, including inclusion size, location, and optical contrast, to discuss the influence on the reconstructed images. We evaluate the influence of each design parameters by percentage error of exact and reconstructed optical-property distribution. Furthermore, we also evaluate the effectiveness and accuracy of our imaging system when measuring the mice with human breast cancer cells.
Based on the evaluate results, our imaging system can reconstruct the inclusion with diameter over one-sixth diameter of container. In measuring mice, there is significant difference in measurement characteristics and reconstructed images of normal mice and mice with tumor. In addition, the reconstructed tumor position is close to the exact tumor position. Therefore, the frequency domain imaging system developed in this study is effective for screening the inclusion/tumor embedded in tissue simulating phantom, and the measurement and imaging results of mice depend on the optical contrast of the tumor relative to the background tissue.
[1] 行政院衛生署國民健康局,民國98年癌症年度報告。
http://www.bhp.doh.gov.tw/BHPnet/Portal/StatisticsShow.aspx?No=200911300001
[2] 美國癌症聯合委員會。
http://www.cancerstaging.org/mission/whatisajcc.html
[3] B. Brooksby, "Combined near-infrared tomography and MRI to improve breast tissue chromophore and scattering assessment," Ph.D. Dartmouth College, Hanover NH, (2005).
[4] 趙耿裕,許智欽,謝正宜,王亭貴,王崇禮‘軟組織腫瘤之超音波檢查’Formosan J Med, Vol.4 No.1,(2000)
[5] 國立中央大學科學教育中心
http://sci.ncu.edu.tw/home/chinatimes-science/exhibition-news/news_08111603
[6] M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surgery, Gynecology and Obstetrics, Vol. 48, pp. 721-727 (1929).
[7] B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” Journal of Biological Chemistry, Vol. 148, pp. 173-183 (1943).
[8] F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science, Vol. 198, No. 4323, pp. 1264-1267 (1977).
[9] J. Fishkin, E. Gratton, M. J. vandeVen, Mantulin and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” SPIE, Vol. 1431, pp. 122-135 (1991).
[10] H. B. Jiang, K. D. Paulsen, U. L. Osterberg and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multitargettissue-like phantoms,” Phys. Med. Biol., Vol. 43, pp. 675–693 (1998).
[11] M. S. Patterson, B. Chance and B. C. Wilson, “Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties,” Appl. Opt., Vol. 28, pp. 2331-2336 (1989).
[12] S. V. Patwardhan, S. R. Bloch, S. Achilefu and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice” Optics Express, Vol. 13, No. 7, 2564-2577 (2005).
[13] N. C. Biswal, J. K. Gamelin, B. Yuan, M. V. Backer, J. M. Backer and Q. Zhu, “Fluorescence imaging of vascular endothelial growth factor in tumors for mice embedded in a turbid medium,” Journal of Biomedcal Optics, Vol. 15(1), 016012 (2010).
[14] L. V. Wang, H. I. Wu, Biomedical optics: principles and imaging, John Wiley and Sons, Inc., New Jersey (2007).
[15] V. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis, 2nd edition, SPIE Press, Bellingham, Washington, USA (2007).
[16] R. Nave , Rayleigh and Mie scattering of incident light
http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
[17] Health Library Johns Hopkins Medicine
http://www.hopkinsmedicine.org/
[18] Paul Beard, “Biomedical Photoacoustic Imaging,” Interface Focus, The Royal Society, 1-30 (2011)
[19] B. J. Tromberg, A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, A. J. Berger, J. Butler and R. F. Holcombe, “Functional diffuse optical spectroscopy of human breast tissue,” The 14th Annual Meeting of the IEEE, Vol. 1, pp. 259-260 (2001/01).
[20] V. G. Peters, D. R. Wymant, M. S. Patterson and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol., Vol. 35, No 9, pp. 1317-1334 (1990)
[21] L. Wang, P. P. Ho, C. Liu, G. Zhang and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical kerr gate,” Science, Vol. 253, No. 5021 pp. 769-771 (1991).
[22] J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge, ” Journal of the Optical Society of America ,Vol. 10, Issue 1, pp. 127-140 (1993).
[23] J. Wang, “Broadband near-infrared tomography for breast cancer imaging,” Ph.D. Dartmouth College, Hanover NH, (2009).
[24] 繆家鼎,徐文娟,牟同升,光電技術,五南圖書出版公司,臺北市 (2003)。
[25] Odic Force Lasers.
http://odicforce.com/page/15
[26] R. D. Straw, The ARRL Handbook for Radio Communications, American Radio Relay League, (2005).
[27] R. Michels, F. Foschum and A. Kienle, “Optical properties of fat emulsions,” Optical Express, Vol. 16, pp. 5907-5925 (2008).
[28] S. J. Madsen, M. S. Patterson and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Physics in Medicine and Biology, Vol. 37, pp. 985-993 (1992).
[29] S. V. Patwardhan and J. P. Culver., “Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier,” Journal of Biomedical Optics, Vol. 13(1), pp. 011009 (2008).
[30] 中國醫藥大學,研究發展處暨附設醫院醫學研究部電子報。
http://www2.cmu.edu.tw/~cmcrdc/epaper/detail.php?epaperno=8&class=C&id=72
[31] 邱健忠, “近紅外光頻域式量測系統於固態乳房仿體之量測與分析研究,” 國立中央大學, 碩士論文, 2011.