| 研究生: |
胡耀文 Yao-Wen Hu |
|---|---|
| 論文名稱: |
銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究 The Study of In-Sn-Fe-O Diluted magnetic Semiconductor and Granular Films |
| 指導教授: |
李文献
Wen-Hsien Li 劉鏞 Yung Liou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 銦錫氧化物 、薄膜 、鐵磁性 、稀釋磁性半導體 、磁性微粒 、奈米 、磁性薄膜 |
| 外文關鍵詞: | DMS, magnetism, Indium Tin Oxide, diluted magnetic semiconductor, ITO, ferromagnetism, thin film, Fe-ITO |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了研究新一代電子元件的材料,選擇銦錫氧化物(Indium Tin oxide,ITO)與鐵(Iron,Fe),以濺鍍方式將兩者共同濺鍍製成薄膜,再以不同的溫度退火處理,根據摻入鐵的比例,製成稀釋磁性半導體(Dilute Magnetic Semiconductor)或是氧化鐵的磁性微粒薄膜(Magnetic Granular Film)。
將製成的樣品,以XRD觀察晶體結構,SEM觀察表面形貌,以及使用ESCA與EDS確認化學組成,並以SQUID測量磁性性質,以及四點量測觀測電阻與磁阻的變化。研究結果表示,當鐵摻入比例低於20%,經退火處理後,XRD看到ITO的繞射訊號,而氧化鐵則沒有,ESCA的分析表示形成三價鐵並取代了銦的位置,ITO本身的特性,如低電阻與高可見光穿透率都得以保有,但其磁性弱,製成居禮溫度低的稀釋磁性半導體。鐵摻入比例30%時,經退火處理後的樣品沒有出現ITO或氧化鐵的任何訊號,磁性行為特殊且成為絕緣體,處在一種ITO與Fe的過渡區,不顯現任何一方的性質。鐵摻入比例高於40%以上,其退火處理後的薄膜XRD觀察到氧化鐵的繞射訊號,而ITO的繞射訊號則未被觀察到,從ESCA的分析得知形成了多種氧化鐵,SEM則觀察到粒徑小於40nm的微粒,從磁性的分析可以判斷出薄膜表現出多種氧化鐵的特性。ITO本身的特性則無法在Fe40%以上觀察到,此時製作出的是氧化鐵磁性微粒薄膜。
We have prepared Fe-indium tin oxide(ITO) films on glass substrates by dc magnetron sputtering deposition. Fe concentration from 1 to 50% were doped into the ITO films by co-sputtering two targets. After annealing from 200 to 700℃, different iron oxide were formed in the film depended on the annealing temperatures and Fe concentrations. ITO films with low concentrations(<20%) of Fe showed the property of the diluted magnetic semiconductor(DMS). ITO films with high concentrations(>30%) of Fe showed the property of the magnetic granular film.
X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), x-ray photoelectron spectroscopy (XPS/ESCA), physical property measurement system (PPMS) and super- conducting quantum interference device (SQUID) were used to characterize the film properties, such as the crystal structure, surface morphology, chemical and magnetic property.
With Fe concentration less than 20%, the films were paramagnetic and Fe was mostly oxidized into Fe2O3 measure by XPS. From XRD measurements, the films structure was the typical ITO structure after annealing above 200℃. With Fe concentrations 30%, the ITO and iron oxide structure was no longer observed, and the films exhibited complex magnetic behaviors due to the formation of different iron oxide and different sized of cluster in the film. When the concentrations of Fe higher than 40%, the iron oxide diffraction peak was observed and the ITO structure disappeared. According to the analysis of ESCA, the complex iron oxide structure was found. Granular magnetite (Fe3O4) was responsible for the ferromagnetism in the film because a Verwey transition at about 120K was observed. After annealing at high temperature, the magnetization of the film decrease which was attributed to the oxidation of Fe3O4 into Fe2O3. Phase separation of Fe particles from ITO in the film was observed after annealing temperatures above 500℃。
1. H. Ohno, Science 281, p951(1998)
2. S. J. Pearton et al., J. Appl. Phys. 93, p1(2003)
3. H. Munekata et al., Phys. Rev. Lett. 63, p1849(1989)
4. A. Van Esch et al., Phys. Rev. B 56, p13103(1997)
5. J. De Boeck et al., Appl. Phys. Lett. 68, p2744(1996)
6. K. C. Ku et al., Appl. Phys. Lett. 82, p2302(2003)
7. T. Dietl et al., Science 287, p1019(2000)
8. A. Punnoose et al., J. Appl. Phys 93, p7867(2003)
9. Yuji Matsumoto et al., Science 291, p854(2001)
10. S. B. Ogale et al., Phys. Rev. B 56 91, p077205-1(2003)
11. T. Fukumura et al., Appl. Surf. Sci. 223, p62(2004)
12. R.H. Kodama, J. Magn. Magn. Mater. 200, p359(1999)
13. Salah A. Makhlouf et al., J. Appl. Phys. 81, p5561(1997)
14. Terunbu Miyazaki et al., J. Magn. Magn. Mater. 151, p403(1995)
15. M. N. Baibich et al., Phys. Rev. Lett. 61, p2472(1988)
16. M. L. Reed et al., Appl. Phys. Leet. 79, p3473(2001)
17. M. L. Reed et al., Mater. Leet. 51, p500(2001)
18. Saki Sonoda et al., J. Crystal Growth 237-239, p1358(2002)
19. M. Hashimoto et al., J. Crystal Growth 252, p499(2003)
20. Kenji Ueda et al., Appl. Phys. Lett. 79, p4020(2001)
21. Parmanand Sharma et al., J. Magn. Magn. Mater., In Press, Uncorrected
Proof, Available online 5 May 2004
22. H. Ohno et al., Appl. Phys. Lett. 69, p363(1996)
23. Hyeon-Jun et al., Appl. Phys. Lett. 81, p4020(2001)
24. D. K. Kim et al., J. Magn. Magn. Mater. 225, p256(2001)
25. Isabelle M.L. Billas et al., J. Magn. Magn. Mater 168, p64(1997)
26. S. Dennler et al., Surf. Sci. 532-535, p334(2003)
27. Robert C. O''Handley, "Modern magnetic Materials", p124(2000)
28. D. Lin et al., J. Magn. Magn. Mater. 145, p343(1995)
29. R. H. Kodama et al., Phys. Rev. B 59, p6321(1999)
30. Yuzo Shigesto et al., Appl. Phys. Lett. 61, p73(1992)
31. Hirokazu Izumi et al., J. Appl. Phys. 91, p1212(2001)
32. M. J. Alam et al., Thin Solid Films 420, p76(2002)
33. H. Kim et al., J. Appl. Phys. 88, p6021(2000)
34. Li-jian Meng et al., Thin Solid Films 303, p151(1997)
35. R.N. Joshi et al., Thin Solid Films, 257, 32 (1995)
36. S. Bhagwat et al., Surf. and Coat. Techno. 111, p163(1999)
37. R. Mientus et al., Surf. Coat. Tech. 142, p748(2001)
38. C. May, J. Str?mpfel, Thin Solid Films 351, p48(1999)
39. D. T. Margulies et al., Phys. Rev. B 53, p9175(1996)
40. 黃凱澤, 民92年,“微米級Fe3O4薄膜之製成與磁性研究”, 台科大碩士論文
41. Ming. Ma et al., J. Magn. Magn. Mater. 268, p33(2004)
42. Zhounbing Huang et al., J. Coll. Inter. Sci. 275, p142(2004)
43. 林希哲, 科儀新知 第十卷 第一期, p25 民77年
44. 唐淑芬, 科儀新知 第十卷 第一期, p37 民77年
45. 李驊登, 科儀新知 第十一卷 第一期, p4 民78年
46. 張榮華, 鄭嘉釧, 科儀新知 第十卷 第三期, p91 民77年
47. John F. Moulder et al.,“Handbook of XPS”, p10(1995)
48. 楊鴻昌, 科儀新知 第十二卷 第六期, p15 民80年