跳到主要內容

簡易檢索 / 詳目顯示

研究生: 韓怡娜
Haiyina Hasbia Amania
論文名稱: 運用大地電磁法探討北部屏東平原地下構造
Imaging the Subsurface Structures with the Magnetotelluric Method in the northern Pingtung Plain of Taiwan
指導教授: 張竝瑜
Chang Ping-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 86
中文關鍵詞: 大地電磁法屏東平原近地表研究
外文關鍵詞: Magnetotelluric, Pingtung Plain, Subsurface Study
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為應用大地電磁法探討台灣西南部屏東平原的地下構造。屏東平原位於馬尼拉俯衝帶與台灣碰撞帶之間的過渡帶,也是台灣最大的地下水補給區之一,由於構造活動和過多的地下水抽運而面臨快速沉降。鑽井資料顯示約500公尺的全新世-更新世厚沉積物覆蓋了大部分的平原淺層,然而稀疏的鑽井分佈對於區域地質了解有限。在本研究中,我們從屏東平原北部的10個站點收集了大地電磁數據,並應用一個遠端參考站作為校正,選擇晚上4個小時為週期的資料,以減少人為干擾影響,研究探測深度可達4公里深,可分成南北向和東西向兩個剖面成像。根據一維反演結果,我們發現未固結的沉積物與500公尺深處的基底接觸之間有一個清晰的邊界。上層的電阻率(<50Ωm)為沖積層,在500公尺深與中新世基底岩石接觸,其電阻率達到數千Ω-m。在此區域我們沒有發現泥火山構造或是河流,然而我們發現電阻率異常反應出類似斷層和構造。因此,可認為影響台灣西南部屏東平原河道方向的主要因素是地形效應而不是地質構造。


    The use of Magnetotelluric method is implemented in attempt to image the subsurface structure in Pingtung Plain area of Southwestern Taiwan. The Plain is in the transition zone between the Manila subduction and Taiwan collision belt, and is considered as one of the country largest groundwater recharge area and is faced to rapid subsidence due to both tectonic activities along with excessive ground water pumping. Thick Holocene-Pleistocene sediments of less than 500m are covering most of the Plain surface. The sparse borehole data in the area provide limited geological information for the subsurface structure. In this study, we collected the Magnetotelluric data from 10 stations in the northern Pingtung Plain to explore to the depth of approximately less than 4km, divided into 2 profiles that is trending North-South and West-East. We also utilized 1 remote station, and selected 4-hours midnight timepiece to reduce the manmade artifacts and noise effects. From 1D inversion result, we obtained a sharp boundary between the unconsolidated sediments and the basement contact at 500m deep. The topmost conductive value belongs to the alluvium layer (<50Ωm) where it contacted the Miocene basement rock of resistivity reaching thousands Ω-m in the depth of approximately 500m. Most features observed in the study area shows a fault-like features and an anomalous volumetric body, thus hardly correlated with the surrounding mud diapir and volcanoes. Also, the topographical effect of SW Taiwan is assumed to be the dominant factor affecting the river course orientation rather than geological structure.

    ABSTRACT i 摘要 ii TABLE OF CONTENTS iii LIST OF FIGURES iv CHAPTER I INTRODUCTION 1 1.1 Introduction 1 1.2 Aim of Study 2 CHAPTER II SURVEY DESIGN 5 2.1 Geological Setting of the Research Area 5 2.2 Instruments and Field Procedures 11 CHAPTER III METHODOLOGY 16 3.1 Magnetotelluric Method 16 3.2 Remote Reference Method 23 3.3 Data Processing 24 3.4.1 Selecting, Viewing, and Converting Time series data 27 3.4.2 Data processing procedures 29 3.4.3 Inversion 34 CHAPTER IV RESULT 38 4.1 Pre-inversion results from data processing 38 4.2 1D Inversion 44 4.3 2D & 3D inversion 46 CHAPTER V DISCUSSION 52 5.2 Model Interpretation 52 CHAPTER VI CONCLUSIONS, LIMITATION AND SUGGESTIONS FOR FUTURE RESEARCH 58 6.1 Magnetotelluric imaging and data processing conclusions 58 6.2 Limitations and Suggestions for Future Research 58 REFERENCES 60 APPENDIX 64

    Angelier, J., Chang, T.-Y., Hu, J.-C., Chang, C.-P., Siame, L., Lee, J.-C., Deffontaines, B., Chu, H.-T., Lu, C.-Y., 2009. Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics 466, 356–376. https://doi.org/10.1016/j.tecto.2007.11.015
    Arnason, K., 2015. The Static Shift Problem in MT Soundings. Proc. World Geotherm. Congr. 2015 12.
    Berdichevsky, M.N., 1999. Marginal Notes On Magnetotellurics, in: Survey in Geophysics. Kluwer Academic Publisher, Netherlands, pp. 341–375.
    Bertrand, E.A., Unsworth, M.J., Chiang, C.-W., Chen, C.-S., Chen, C.-C., Wu, F.T., Türkoğlu, E., Hsu, H.-L., Hill, G.J., 2012. Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. J. Geophys. Res. Solid Earth 117. https://doi.org/10.1029/2011JB008688
    Biete, C., Alvarez-Marron, J., Brown, D., Kuo-Chen, H., 2018. The Structure of Southwest Taiwan: The Development of a Fold-and-Thrust Belt on a Margins Outer Shelf and Slope. Tectonics 37, 1973–1993. https://doi.org/10.1029/2017TC004910
    Bobachev, A.A., 2002. IPI2Win(MT) v.2.0 User’s Guide. Moscow State University, Geoscan-M Ltd., Moscow, Russia.
    Borah, U.K., Patro, P.K., Suresh, V., 2015. Processing of noisy magnetotelluric time series from Koyna-Warna seismic region, India: a systematic approach. Ann. Geophys. https://doi.org/10.4401/ag-6690
    CGS, T., 2002. Hydrogeological Survey Report of Pingtung Plain,. Taiwan: Central Geological Survey, Ministry of Economic Affairs, Executive Yuan, pp. 97–142.
    Chave, A., Jones, A.G., 2012. The Magnetotelluric Method Theory and Practice. Cambridge University Press, New York.
    Chave, A.D., Thomson, D.J., 2004. Bounded influence magnetotelluric response function estimation. Geophys. J. Int. 157, 988–1006. https://doi.org/10.1111/j.1365-246X.2004.02203.x
    Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 92, 201–214. https://doi.org/10.1016/j.jseaes.2013.10.009
    Chiang, C.-S., Yu, H.-S., Chou, Y.-W., 2004. Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Res. 16, 65–78. https://doi.org/10.1111/j.1365-2117.2004.00222.x
    Chiang, S.C., 1971. Seismic study of the Chaochou structure, Pingtung,Taiwan.
    Christopherson, K.R., 2001. Magnetotellurics (MT): Technique, Interpretation, and Application [WWW Document]. http://www.searchanddiscovery.com/. URL (accessed 11.30.19).
    Constable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. GEOPHYSICS 52, 289–300. https://doi.org/10.1190/1.1442303
    deGroot‐Hedlin, C., Constable, S., 1990. Occam’s inversion to generate smooth, two‐dimensional models from magnetotelluric data. GEOPHYSICS 55, 1613–1624. https://doi.org/10.1190/1.1442813
    Doo, W.-B., Hsu, S.-K., Lo, C.-L., Chen, S.-C., Tsai, C.-H., Lin, J.-Y., Huang, Y.-P., Huang, Y.-S., Chiu, S.-D., Ma, Y.-F., 2015. Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophys. J. Int. 203, 2089–2098. https://doi.org/10.1093/gji/ggv430
    Doo, W.-B., Lo, C.-L., Hsu, S.-K., Tsai, C.-H., Huang, Y.-S., Wang, H.-F., Chiu, S.-D., Ma, Y.-F., Liang, C.-W., 2018. New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations. J. Asian Earth Sci. 154, 93–100. https://doi.org/10.1016/j.jseaes.2017.12.010
    Gamble, T.D., Goubau, W.M., Clarke, J., 1979. Magnetotellurics with a remote magnetic reference. GEOPHYSICS 44, 53–68. https://doi.org/10.1190/1.1440923
    Giletycz, S.J., Lin, A.T.-S., Chang, C.-P., Shyu, J.B.H., 2019. Relicts of mud diapirism of the emerged wedge-top as an indicator of gas hydrates destabilization in the Manila accretionary prism in southern Taiwan (Hengchun Peninsula). Geomorphology 336, 1–17. https://doi.org/10.1016/j.geomorph.2019.03.022
    Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., Huang, C., Yang, Y.-R., Chen, R.-F., Chen, Y.-G., Angelier, J., 2005. Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geosci. 337, 1184–1193. https://doi.org/10.1016/j.crte.2005.05.012
    Hsieh, H.-H., Yen, H.-Y., 2016. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data. J. Asian Earth Sci. 124, 247–259. https://doi.org/10.1016/j.jseaes.2016.05.009
    Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., Ma, K.-W., 2007. Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol. J. 15, 903–913. https://doi.org/10.1007/s10040-006-0137-x
    Hu, J.-C., Hou, C.-S., Shen, L.-C., Chan, Y.-C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K.H.-H., Lin, C.-W., Huang, M.-H., Nien, P.-F., 2007. Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. J. Asian Earth Sci. 31, 287–302. https://doi.org/10.1016/j.jseaes.2006.07.020
    Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., Hsieh, H.-H., 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth Planet. Sci. Lett. 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
    Huang, P.-S., Chiu, Y.-C., 2018. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan. Water 10, 251. https://doi.org/10.3390/w10030251
    Jang, C.-S., Chen, C.-F., Liang, C.-P., Chen, J.-S., 2016. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. J. Hydrol. 533, 541–556. https://doi.org/10.1016/j.jhydrol.2015.12.023
    Jones, A.G., 1988. Static shift of magnetotelluric data and its removal in a sedimentary basin environment. GEOPHYSICS 53, 967–978. https://doi.org/10.1190/1.1442533
    Kelbert, A., Meqbel, N., Egbert, G.D., Tandon, K., 2014. ModEM: A modular system for inversion of electromagnetic geophysical data. Comput. Geosci. 66, 40–53. https://doi.org/10.1016/j.cageo.2014.01.010
    Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., Shen, P., 2005. Three-dimensional V P and V S structural models associated with the active subduction and collision tectonics in the Taiwan region. Geophys. J. Int. 162, 204–220. https://doi.org/10.1111/j.1365-246X.2005.02657.x
    Krieger, L., Peacock, J.R., 2014. MTpy: A Python toolbox for magnetotellurics. Comput. Geosci. 72, 167–175. https://doi.org/10.1016/j.cageo.2014.07.013
    Kuo-Chen, H., Wu, F.T., Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets: 3D VP STRUCTURES FROM TAIGER PROJECT. J. Geophys. Res. Solid Earth 117, n/a-n/a. https://doi.org/10.1029/2011JB009108
    Lahti, I., 2015. AUDIOMAGNETOTELLURIC (AMT) MEASUREMENTS: A NEW TOOL FOR MINERAL EXPLORATION AND UPPER CRUSTAL RESEARCH AT THE GEOLOGICAL SURVEY OF FINLAND. Geol. Surv. Finl. Special Paper 57, 155–172.
    Liang, C.-P., Jang, C.-S., Liang, C.-W., Chen, J.-S., 2016. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public. Health 13, 1167. https://doi.org/10.3390/ijerph13111167
    Lin, K.-P., Chou, P.-C., Dong-Sin, S., 2016. To Study Hydrological Variabilities by Using Surface and Groundwater Coupled Model – A Case Study of PingTung Plain, Taiwan. Procedia Eng. 154, 1034–1042. https://doi.org/10.1016/j.proeng.2016.07.593
    Liu, T.-Y., 2005. The Primary Results of Gravity and Magnetic Survey in Kaoping Area (Master Thesis). National Central University, Taiwan.
    Lo, Y.-T., Yen, H.-Y., Chen, C.-R., 2018. Correlation between the Bouguer gravity anomaly and the TAIGER tomography of the Taiwan region. Terr. Atmospheric Ocean. Sci. 29, 473–483. https://doi.org/10.3319/TAO.2018.03.01.01
    Luan, X., Di, Q., Cai, H., Jorgensen, M., Tang, X., 2018. CSAMT Static Shift Recognition and Correction Using Radon Transformation. IEEE Geosci. Remote Sens. Lett. PP, 1–5. https://doi.org/10.1109/LGRS.2018.2820743
    Maithya, J., Fujimitsu, Y., 2019. Analysis and interpretation of magnetotelluric data in characterization of geothermal resource in Eburru geothermal field, Kenya. Geothermics 81, 12–31. https://doi.org/10.1016/j.geothermics.2019.04.003
    Malleswari, D., Veeraswamy, K., Abdul Azeez, K.K., Gupta, A.K., Babu, N., Patro, P.K., Harinarayana, T., 2019. Magnetotelluric investigation of lithospheric electrical structure beneath the Dharwar Craton in south India: Evidence for mantle suture and plume-continental interaction. Geosci. Front. 10, 1915–1930. https://doi.org/10.1016/j.gsf.2018.10.011
    Marine EM Lab, 2006. Occam 2D MT File Format Notes.
    Mwakirani, R., Simiyu, C., Gichira, J., n.d. Application of Transient Electromagnetics in Static Shift Correction for Magnetotellurics Data Case Study: Paka Geothermal Prospect in Kenya 4.
    Petiau, G., Dupis, A., 1980. NOISE, TEMPERATURE COEFFICIENT, AND LONG TIME STABILITY OF ELECTRODES FOR TELLURIC OBSERVATIONS*. Geophys. Prospect. 28, 792–804. https://doi.org/10.1111/j.1365-2478.1980.tb01261.x
    Selway, K., Thiel, S., Key, K., 2012. A simple 2-D explanation for negative phases in TE magnetotelluric data: Simple 2D explanation for negative TE phases. Geophys. J. Int. 188, 945–958. https://doi.org/10.1111/j.1365-246X.2011.05312.x
    Shalivahan, Bhattacharya, B.B., 2002. How remote can the far remote reference site for magnetotelluric measurements be? J. Geophys. Res. 107, 2105. https://doi.org/10.1029/2000JB000119
    Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. https://doi.org/10.1017/CBO9780511614095
    Sternberg, B., Washburne, J., Pellerin, L., 1988. Correction for static shift in magnetotellurics using transient electromagnetic soundings. GEOPHYSICS 53, 1459–1468. https://doi.org/10.1190/1.1442426
    Szarka, L., 1988. Geophysical aspects of man-made electromagnetic noise in the earth - a review, in: Surveys in Geophysics. Kluwer Academic Publisher, Hungary, p. 32.
    Tournerie, B., Chouteau, M., Marcotte, D., 2007. Magnetotelluric static shift: Estimation and removal using the cokriging methodMagnetotelluric static shift. Geophysics 72, F25–F34. https://doi.org/10.1190/1.2400625
    Uchida, T., Song, Y., Lee, T.J., Mitsuhata, Y., Lim, S.-K., Lee, S.K., 2005. Magnetotelluric Survey in an Extremely Noisy Environment at the Pohang Low-Enthalpy Geothermal Area, Korea. Proc. World Geotherm. Congr. 9.
    Unsworth, M., 2007. Magnetotellurics, in: Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht.
    Vozoff, K., 1990. Magnetotellurics: Principles and practice. Princ. Pract. 99, 31.
    Weckmann, U., Magunia, A., Ritter, O., 2005. Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme. Geophys. J. Int. 161, 635–652. https://doi.org/10.1111/j.1365-246X.2005.02621.x
    Wu, F.T., Kuo-Chen, H., McIntosh, K.D., 2014. Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. J. Asian Earth Sci. 90, 173–208. https://doi.org/10.1016/j.jseaes.2014.03.024
    Yang, C., Lin, C., 2001. Judgment and correction for MT static shift by TEM inversion method 26, 609–614.
    You, C.-F., Gieskes, J.M., Lee, T., Yui, T.-F., Chen, H.-W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Appl. Geochem. 19, 695–707. https://doi.org/10.1016/j.apgeochem.2003.10.004
    Zhang, L., Hao, T., Xiao, Q., Wang, J., Zhou, L., Qi, M., Cui, X., Cai, N., 2015. Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China. J. Appl. Geophys. 118, 47–65. https://doi.org/10.1016/j.jappgeo.2015.04.006

    QR CODE
    :::