| 研究生: |
洪毓瑄 Yu-Hsuan Hung |
|---|---|
| 論文名稱: |
以電漿子增強螢光顯微術結合反摺積描繪金屬奈米結構 Mapping of Metallic Nanostructures by Plasmon Enhanced Fluorescence Microscopy in Combination of Deconvolution Method |
| 指導教授: |
戴朝義
Chao-Yi Tai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 螢光顯微術 、反摺積 、金屬奈米結構 |
| 外文關鍵詞: | Fluorescence Microscopy, Deconvolution, Metallic Nanostructures |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用反摺積技術重建R6G螢光分子在金屬奈米結構上隨機發光的過程,以獲得一張超解析影像。透過金屬電漿子增強螢光訊號強度,來凸顯金屬與基板訊號上的差異,再控制螢光分子濃度使之稀疏發光,進而達到單分子發光,由於布朗運動的關係,螢光分子會隨機出現在樣品上,錄製每個時刻的螢光影像,再透過反摺積運算,疊加一張張反摺積後的螢光影像,便能描繪出金屬奈米結構。若能成功達到與電子顯微鏡相同解析度,便是建立了一項超解析影像技術,此技術將超越光學顯微鏡的解析度,且不具有像電子顯微鏡有破壞樣品的風險。
This research by using the method of deconvolution rebuild the process of random blinking caused by Rhodamine 6G on nanoscale metal structures, obtaining a super resolution image as result. In order to enhance the S/N ratio between nanoscale metal structures and substrates, we take advantage of surface plasmons to rise the intensity of fluorescence on nanoscale metal structures. Further, by adjusting the concentration of Rhodamine 6G solution to achieve the goal of single molecular blinking.
By Brownian motion theory, Rhodamine 6G molecules would appear on sample randomly. With the films and images of fluorescence taking place on nanoscale metal structures, we could rebuild the morphology of nanoscale metal structures through deconvolution calculations. If the resolution of the final result reach the same level as SEM, it can be seen as a super resolution technique. This technique could provide higher resolution images than conventional optical microscopes, also could avoid the risk of destroying samples by using SEM.
[1] http://scimonth.blogspot.tw/2014/12/blog-post_64.html?m=1
[2]E. Betzig, S. W. Hell, W. E. Moerner, The Nobel Prize In Chemistry (2014)
[3]T. Ha, P. Tinnefeld, “Photophysics of fluorescence probes for single molecule biophysics and super resolution imaging,” Annual Review Physical Chemistry 63(1), 595-617 (2012)
[4]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the prescence of multiple fluorophore,” Nano Letters 11, 5090-5096 (2011)
[5]S. A. Hussain, “An introduction to fluorescence resonance energy transfer(FRET)”
[6] D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Applied Physics Letters 44(7), 651-653 (1984)
[7]A. Harootunian, E. Betzig, M. Isaacson, A. Lewis. “Super-resolution fluorescence near-field scanning optical microscopy,” Applied Physics Letters 49(11), 674-676 (1986)
[8]Lipson S. G., Lipson H., Optical Physics, 4th edition, Cambridge University Press (2011).
[9] https://en.wikipedia.org/wiki/STED_microscopy
[10]Cornea A., Conn P. M., Fluorescence microscopy: Super-Resolution and other Novel Techniques, Academic Press, USA (2014).
[11]M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy”, Journal of Microscopy 198(2), 82-87 (2000)
[12]Bernard Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH, Weinheim (2002)
[13]Drude and Paul, “Zur Elektronentheorie der metalle” Annalen der Physik 306, 566 (1990)
[14]N. W. Ashcroft, N. D. Mermin, Solid State Physics, page 6
[15]M. A. Ordal, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, “Optical Properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied Optics 24(24), 4493-4499 (1985)
[16]A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics 37(22), 5271-5283 (1998)
[17]D. Barchiesi and T. Grosges, “Fitting the Optical Constants of Gold, Silver, Chromium, Titanium, and Aluminum in the Visible Bandwidth,” Journal of Nanophotonics 8(1), 083097 (2014)
[18]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B 6(12), 4370-4379 (1972)
[19]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum, ” Proceeding of the Physical Society 18, 269-275 (1902)
[20]U. Fano, “The theory of anomalous diffraction gratings and of quasistationary waves on metallic surfaces, ” Journal of the Optical Society of America 31, 213-222 (1941)
[21]R. H. Ritchie, “Plasma losses by fast electrons in thin films, ” Physical Review 106, 874-881 (1957)
[22]A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968)
[23]E. Kretschm and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light, ”Z. Naturf. 23A, 2135-2136 (1968)
[24]M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3(10), 793-796 (2006)
[25]M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angewandte Chemie International Edition 47, 6172-6176 (2008)
[26]E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 6172-6176 (2006)
[27]A. Burger, S. Letschert, S. Doose, M. Sauer, “Artifacts in single-molecule localization microscopy,” Histochemistry and Cell Biology 144(2), 123-131 (2015)
[28]Y. Feng, J. Goree, B. Liu, “Accurate position measurement from images” Review of Scince Instruments 78 (5), 053704 (2007)
[29]C. S. Smith, N. Joseph, B. Rieger, K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nature Methods 7, 373-375 (2010)
[30]M. P. Gordon, T. Ha, P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. 101(17), 6462-6465 (2004)
[31]P. D. Simonson, E. Rothenberg, P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Letters 11(11), 5090-5096 (2011)
[32]F. Huang, S. L. Schwartz, J. M. Byars, K. A.Lidke, “Simultaneous ,multiple-emitter fitting for single molecule super-resolution imaging,” Biomedical Optics Express 2, 1377-1393 (2011)
[33]P. Sarder, A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Processing Magazine 23(2), 32-45 (2006)
[34]E. A. Mukamel, H. Babcock, X. Zhuang, “Stastical deconvolution for supperresolution fluorescence microscopy,” Biophysical Journal 102, 2391-2400 (2012)
[35]L. Lucy, “An iterative technique for the rectification of observed distribution,” Astronomical Journal 79(6), 745-766 (1974)
[36]W. Richardson, “Bayesian-based iterative method of image restoration,” Optical Society of America 62(1), 55-59 (1972)
[37]L. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging 1(2), 113-122 (1982)
[38]H. Sun, M. Yu, G. Wang, X. Sun, and J. Lian, “Temperature-Dependent Morphology Evolution and Surface Plasmon Absorption of Ultrathin Gold Island Films,” J. Phys. Chem. C 116(16), 9000-9008, 2012
[39]張勝涵,於離子交換波導表面組裝三角晶格之奈米粒子陣列實現具指向性中間解析之拉曼光譜,國立中央大學光電所碩士論文,中華民國一零五年六月
[40]J. R. Lakowicz, “Radiative Decay Engineering 5: Metal-Enhanced Fluorescence and Plasmin Emission” Analytical Biochemistry 337, 171-194 (2005)
[41]J. R. Lakowicz, Y. Shen, S. D’Auria, J.Malicka, J. Fang, Z. Gryczynski, I. Gryczynski, “Radiative Decay Engineering 2: Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer” Analytical Biochemistry 301, 261-277 (2002)