| 研究生: |
廖欣瑩 Sin-Ying Liao |
|---|---|
| 論文名稱: | Riemann-Roch-Hirzebruch Theorem For Circle Bundle Over A Riemann Surface |
| 指導教授: |
黃榮宗
Rung-Tzung Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 黎曼面 |
| 外文關鍵詞: | Hirzebruch-Riemann-Roch |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鄭老師、蕭老師和蔡老師最近有一個定理,是在有 circle action 的 CR manifolds 上的 CR Riemann-Roch-Hirzebruch 定理。我們先複習在 Riemann surfaces 上的 Riemann-Roch-Hirzebruch 定理,然後再討論鄭老師、蕭老師和蔡老師在 CR manifolds 上 circle bundle 的 CR Riemann-Roch-Hirzebruch 定理。
In a recent paper of Cheng, Hsiao and Tsai, they obtained a CR Riemann-Roch-Hirzebruch Theorem for CR manifolds with a circle action. In this thesis we first review the Riemann-Roch-Hirzebruch Theorem for Riemann surfaces. Then we discuss CR Riemann-Roch-Hirzebruch Theorem of Cheng, Hsiao and Tsai for a circle bundle over a Riemann surface in details.
[1] M.-S. Baouendi and L.-P. Rothschild and F.-Treves, \textit{CR structures with group action and extendability of CR functions}, Invent. Math., 83(1985), 359-396.
[2] J.-H. Cheng, C.-Y. Hsiao, I.-H. Tsai, \textit{Heat Kernel, Asymptotics And A Local Index Theorem For CR Manifolds With $S^1$ Action}, arXiv:1511.00063v2.
[3] X. Dai, \textit{Lectures on Dirac Operators and Index Theory}, January 7, 2015.
[4] X. Ma and G. Marinescu, \textit{Holomorphic Morse inequalities and Bergman kernels}, Progress in Math., vol. 254, Birkh$\ddot{a}$user, Basel, 2007, 422 pp.
[5] D. Varolin, \textit{Riemann Surfaces by Way of Complex Analytic Geometry}, 2011.