| 研究生: |
潘冠廷 GUAN-TING PAN |
|---|---|
| 論文名稱: |
光子對與乙炔氣體的動態交互作用 Dynamic Interaction Behavior Between Photon Pairs AndAcetylene Gas |
| 指導教授: |
蔡秉儒
Pin-Ju Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 乙炔 、光子分子交互作用 、快光 、負群延遲 、反常色散 、吸收線 |
| 外文關鍵詞: | Acetylene, Interaction, fast light, absorption lines, negative group delays, anomalous dispersion |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究了分子吸收與量子光傳播之間的交互作用,重點聚焦於單光子
層級下的快光(fast-light)現象。從量子觀點出發,我們推導了吸收
譜線的形成機制,並在符合因果律的條件下,模擬了由反常色散所引起
的脈衝前移效應。
在實驗方面,透過自發參數下轉換(SPDC)所產生的單光子脈衝,其頻
譜被調整至與乙炔分子的吸收線對齊,成功觀察到不違反因果律的可測
負群延遲(negative group delay)。
作為前置步驟,我們亦分析了 SPDC 雙光子訊號的訊噪比(SNR),以確
定最佳操作條件。此外,本研究也指出,快光效應可望藉由有效負折射
率提升光學陀螺儀的靈敏度。
We investigate the interaction between molecular absorption and quantum light
propagation, focusing on the fast-light phenomenon at the single-photon level.
From a quantum perspective, we derived the formation mechanism of absorption lines and simulated pulse advancement induced by anomalous dispersion
under causality. Experimentally, single-photon pulses generated via spontaneous parametric down conversion(SPDC) were spectrally aligned with an acetylene absorption line, enabling the observation of measurable negative group de
lays without violating causality. As a preparatory step, the signal-to-noise ratio (SNR) of SPDC biphotons was analyzed to determine the optimal operating
regime. The potential application of fast light in enhancing optical gyroscope
sensitivity via an effective negative refractive index is also highlighted.
Bibliography
[1] A. Yariv and P. Yeh. Optical Waves in Crystals: Propagation and Control of
Laser Radiation. New York: Wiley, 1983.
[2] MatthewJ.Armstrongetal.“Quasi-Phase-MatchingEngineeringofUltra
fast Nonlinear Interactions in Lithium Niobate”. In: Crystals 11.4 (2021),
p. 406. DOI: 10.3390/cryst11040406. URL: https://www.mdpi.
com/2073-4352/11/4/406.
[3] Hoi-Kwong Lo, Marcos Curty, and Bing Qi. “Measurement-device
independent quantum key distribution”. In: Physical Review Letters 108.13
(2012), p. 130503. DOI: 10.1103/PhysRevLett.108.130503.
[4] T. T. Kajava, H. M. Lauranto, and R. R. E. Salomaa. “Fizeau interferometer
in spectral measurements”. In: Journal of the Optical Society of America B
10.11 (1993), pp. 1980–1989. DOI: 10.1364/JOSAB.10.001980.
[5] . “” MA thesis.: 2023. URL: http://tdr.lib.ntu.edu.tw/jspui/
handle/123456789/90075.
[6] Wolfgang Demtröder. Laser Spectroscopy. 4th. Springer, 2014. ISBN: 978-3
642-41655-2.
[7] Kendall R. Waters, Joel Mobley, and James G. Miller. “Causality-imposed
(Kramers–Kronig) relationships between attenuation and dispersion”. In:
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52.5
(2005), pp. 822–823. DOI: 10.1109/TUFFC.2005.1431704.
[8] Sheng-Hung Wang et al. “Harnessing Hybrid Frequency-Entangled Qu
dits through Quantum Interference”. In: arXiv preprint arXiv:2503.00362
(2025). DOI: 10.48550/arXiv.2503.00362.
[9] Seth Lloyd. “Enhanced Sensitivity of Photodetection via Quantum Illu
mination”. In: Science 321.5895 (2008), pp. 1463–1465. DOI: 10.1126/
science.1160627.
[10] Si-HuiTanetal.“QuantumilluminationwithGaussianstates”.In:Physical
Review Letters 101.25 (2008), p. 253601. DOI: 10.1103/PhysRevLett.
101.253601.
[11] Wolfgang Demtröder. Laser Spectroscopy: Vol. 1 Basic Principles. 5th.
Springer, 2014. ISBN: 978-3-642-45125-4.
131
[12] Zurich Instruments. Principles of Lock-in Detection and the State of the Art.
White Paper. Last updated: April 2023. Zurich, Switzerland: Zurich In
struments, 2023. URL: https://www.zhinst.com.
[13] Y.-C. Lin et al. “Advancements in Quantum Radar Technology: An
Overview of Experimental Methods and Quantum Electrodynamics Con
siderations”. In: IEEE Nanotechnology Magazine 18.3 (2024), pp. 4–14. DOI:
10.1109/MNANO.2024.3378484.
[14] M. S. Shahriar et al. “Ultrahigh Precision Absolute and Relative Rotation
Sensing using Fast and Slow Light”. In: arXiv preprint quant-ph/0505192
(2005). URL: https://arxiv.org/abs/quant-ph/0505192.
132