跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江俊儀
Jiuun-Yi Jiang
論文名稱: 混凝土障壁耦合劣化之參數影響分析
指導教授: 張瑞宏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 148
中文關鍵詞: 混凝土障壁耦合熱-水汽-二氧化碳傳輸模型熱漲冷縮濕漲乾縮
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立了混凝土障壁的偶合熱-水汽-二氧化碳傳輸模型、熱漲冷縮與濕漲乾縮模型,藉此對儲存低放射性廢棄物之淺地層處置場的混凝土障壁進行耐久性評估。
    在耦合熱-水汽-二氧化碳傳輸分析中本研究採用有限元素軟體ABAQUS,輔以副程式及批次檔建立模型,並對溫度、相對濕度、二氧化碳濃度歷時曲線進行討論。根據分析結果可知水汽傳輸結果的些微改變就有可能造成截然不同二氧化碳傳輸結果。依此模型為基礎本研究繼續對水氣邊界條件與水汽擴散率D_m進行參數影響分析,結果顯示增加水氣擴散率會加速初期混凝土內水分的流失及對二氧化碳傳輸產生極大的影響。
    在熱漲冷縮濕濕漲乾縮分析中本研究以之前建立的傳輸模型為基礎,探討熱漲冷縮與濕漲乾縮產生的力學反應,並對位移、應力歷時圖進行討論,結果顯示熱漲冷縮與濕漲乾縮並不會使混凝土產生裂縫。依此模型為基礎本研究繼續對溫度邊界條件與自由水汽收縮係數β進行參數影響分析,結果顯示這兩項參數都會對混凝土的位移及應力結果產生極大的影響。


    To evaluate the durability of reinforced concrete structures which stored the Low-level radioactive exposed to various aggressive environments, this study established three numerical simulation model, coupled heat-moisture- carbon dioxide transfer model, thermal expansion/contraction model and wetting expansion/drying shrinkage model.
    In this study we use subroutine, batch file and ABAQUS which is finite element software to establish coupled heat-moisture- carbon dioxide transfer model, according to the result we can find that the small change of moisture transfer result can create an enormous change to carbon dioxide transfer result. Based on this model, this study chooses moisture diffusivity and moisture boundary condition to run parameters impact analysis, according to the result the change of moisture diffusivity will cause enormous change to the carbon dioxide transfer result.
    Basic of the transfer model, this study established thermal expansion/contraction model and wetting expansion/drying shrinkage model. The result shows that thermal expansion/contraction and wetting expansion/drying shrinkage does not make concrete crack. Based on this model, this study chooses moisture contraction coefficient and temperature boundary condition to run parameters impact analysis, according to the result the change of moisture contraction coefficient and temperature boundary condition will cause enormous change to the result of displacement and stress.

    摘要......................................................i 英文摘要.................................................ii 誌謝.................................................. .iii 目錄.....................................................iv 圖目錄..................................................vii 表目錄..................................................xii 符號說明................................................xiv 第一章 緒論..............................................1 1.1前言...................................................1 1.2研究動機與目的.........................................2 1.3研究主題與方法.........................................4 1.4論文內容...............................................5 第二章 文獻回顧..........................................6 2.1放射性廢棄物處置的安全性研究...........................6 2.2低放射性廢棄物處置方式.................................9 2.3現階段我國低放射性廢棄物處理方式......................11 2.4混泥土障壁劣化之相關文獻..............................12 第三章 耦合熱-水汽-二氧化碳傳輸理論.....................16 3.1前言..................................................16 3.2熱傳分析理論..........................................17 3.3水汽傳輸理論..........................................20 3.4二氧化碳傳輸理論......................................26 第四章 耦合熱-水氣-二氧化碳傳輸模型與參數影響分析.......33 4.1前言..................................................33 4.2材料參數介紹..........................................33 4.3初始條件與邊界條件介紹................................35 4.4網格設置及模型建立....................................36 4.5分析流程..............................................40 4.6時間增量收斂分析......................................42 4.7結果比對..............................................43 4.8相關參數影響分析......................................44 第五章 混凝土的力學分析理論..............................65 5.1前言..................................................65 5.2熱漲冷縮及濕漲乾縮效應................................66 5.3混凝土的單、多軸應力-應變行為.........................67 5.4均勻裂縫模型..........................................68 5.5張力勁度..............................................70 第六章 混凝土的力學模型與參數影響分析....................73 6.1前言..................................................73 6.2材料參數介紹..........................................74 6.3初始條件與邊界條件介紹...............................77 6.4網格設置與模型建立方法................................79 6.5分析結果..............................................82 6.6參數影響分析..........................................89 第七章 結論與建議......................................121 7.1結論.................................................121 7.2建議.................................................123 參考文獻................................................124

    【1】 國政研究報告http://old.npf.org.tw/PUBLICATION/SD/089/R/SD-R-089-008.HTM
    【2】清蔚園(2004),核廢料處置場的選擇 http://vm.nthu.edu.tw/science/shows/nuwaste/process.html
    【3】台灣電力公司 本部低放射性廢棄物最終處置設施建議候選場址公告http://www.llwfd.org.tw/notice_view.aspx?id=422
    【4】劉東山、蔡昭明,「放射性廢料管理 」
    【5】經濟部低放射性廢棄物最終處置網站http://llwfd.org.tw/index.aspx
    【6】行政院原子能委員會 放射性物料管理局
    http://gamma1.aec.gov.tw/fcma/control_current_conditions_f.asp
    【7】王俊堯,「低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究」
    【8】Dong Chen ,“COMPUTATIONAL FRAMEWORK FOR DURABILITY ASSESSMENT OF REINFORCED CONCRETE STRUCTURES UNDER
    COUPLED DETERIORATION PROCESSES” Dissertation , Submitted to the Faculty of the Graduate School of Vanderbilt University , Civil Engineering August, 2006 Nashville, Tennessee.
    【9】廖偵翔,「核廢料地下處置場受多重劣化機制之耦合熱-水化-碳化分析」,國立中央大學土木工程研究所碩士論文。
    【10】ABAQUS User’s Manual Vol.I, Version6.12.
    【11】 Granger, L., Torrenti, J. M. and Acker, P. (1997) “Thoughts about Drying Shrinkage: Experimental Results and Quantification of Structural Drying Creep”, Materials and
    structures, Vol. 30, No. 204, pp. 588-598.
    【12】Engineering and Design of Technical Applications
    http://www.engineeringtoolbox.com/concrete-properties-d_1223.html
    【13】蘇銘富,「混凝土障壁之耦合熱-水化-碳化分析-參數影響分析」,國立中央大學土木工程研究所碩士論文。
    【14】ACI (2002) ACI Committee 201,“Guide to Durable Concrete”, ACI 201.2R-92, American Concrete Institute, Farmington Hills, Michigan.
    【15】ACI (2002) ACI Committee 308,“Building Code Requirements for Structural Concrete and Commentary”, ACI 308-99, American Concrete Institute, Farmington Hills,Michigan.
    【16】ACI (2000) ACI,“Manual of Concrete Practice”. Technical report, American Concrete Institute, Farmington Hills, Michigan.
    【17】Ahmad, S. (2003),“ Reinforcement corrosion in concrete structures, its monitoring and service life prediction — a review”, Cement and Concrete Composites, Vol. 25, No.4-5, pp. 459-471.
    【18】Aldea, C-M., Shah, S.P. and Karr, A.F. (1999a),“Effect of Cracking on Water and Chloride Permeability of Concrete”, Journal of Materials in Civil Engineering, Vol. 11, No. 3,
    pp. 181-187.
    【19】Aldea, C.M., Shah, S.P. and Karr, A. (1999b),“ Permeability of Cracked Concrete,Materials and Structures”, Vol. 32, No. 219, pp. 370-376.
    【20】Alfaiate, J., Pires, E.B. and Martins, J.A.C. (1997),“A Finite Element Analysis of Non-Prescribed Crack propagation in Concrete”, Computers & Structures, Vol. 63, No.
    1, pp. 17-26.
    【21】Andrade, C., Alonso, C. and Molina, F. J. (1993),“Cover
    Cracking as a Function of Rebar Corrosion: Part I —
    Experimental Test”, Materials and Structures, Vol. 26, No.
    162,pp.453-464.
    【22】Arya, C. and Ofori-darko, F.K. (1996),“Influence of
    Crack Frequency on Reinforcement Corrosion in Concrete”,
    Cement and Concrete Research, Vol. 26, No. 3, pp. 345-353.
    【23】Bangash, M.Y.H. (1989),“Concrete and Concrete
    Structures: Numerical Modeling and Applications”, Elsevier
    Science Published Ltd., London, England.
    【24】Bangert, F., Grasberger, S., Kuhl, D. and Meschke, G.
    (2003),“Environmentally Induced Deterioration of Concrete:
    Physical Motivation and Numerical Modeling”,221 Engineering
    Fracture Mechanics, Vol. 70, No. 7-8, pp. 891-910.
    【25】Basheer, L., Kropp, J. and Cleland, D.J. (2001),
    “Assessment of the durability of concrete from its permeation properties: a review”, Construction and Building Materials, Vol.15, No. 2, pp. 93-103.
    【26】Bazant, Z. P. (1979a),“Physical model for steel corrosion in concrete sea structures –theory”, ASCE Structural Division Journal, Vol. 105, No. 6, pp. 1137-1153.
    【27】Bazant, Z. P. (1979b),“Physical model for steel corrosion in concrete sea structures –application”, ASCE Structural Division Journal, Vol. 105, No. 6, pp. 1155-1166.
    【28】Bazant, Z.P. (1995),“Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures – Model B3”, Materials and Structures, Vol. 28, No. 168, pp.
    357-365.
    【29】Berke, N. S., and Hicks, M. C. (1994),“Predicting chloride profiles in concrete”, Corrosion 222 Engineering, Vol. 50, No. 3, pp. 234-239.
    【30】Gerard, B. and Marchand, J. (2000),“Influence of Cracking on the Diffusion Properties of Cement-Based Materials, Part I: Influence of Continuous Cracks on the Steady-State Regime”, Cement and Concrete Research, Vol. 30, No. 1, pp. 37-43.
    【31】Gordner, N.J. and Lockman, M.J. (2001),“Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete”, ACI Materials Journal, Vol. 98, No.2,pp.159-167.
    【32】Hansen, E.J. and Saouma, V.E. (1999),“ Numerical Simulation of Reinforced Concrete Deterioration: Part II — Steel Corrosion and Concrete Cracking”, ACI materials journal, Title no. 96-M41, pp. 331-338.
    【33】Ishida, T. and Maekawa, K. (2000),“ Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory”, Translation from Proceedings of JSCE,
    No.648/V-47, pp. 125-140.

    QR CODE
    :::