跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張富程
Fu-chen Chang
論文名稱: 應用歸零原理和極化對比技術之影像式波導共振生物感測器
Application of Nulling Theory and Polarization Contrast for Imaging Type Guided-Mode Resonance Biosensor
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 80
中文關鍵詞: 生物感測器極化對比歸零原理影像式感測器波導共振
外文關鍵詞: biosensor, GMR, nulling theory, polarization contrast
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在研發一新型影像式波導共振生物感測器。隨著科技的發展,人們越來越注重疾病的預防,也是生物感測器越來越蓬勃發展的主要原因。從早期的一維單點量測生物感測器慢慢演化至現在二維多點影像式生物感測器,中間的技術不斷的進步及突破。其中又以光學式的生物感測器較為容易達到影像式生物感測器的目標。本研究以波導共振生物感測器為基礎,加上極化對比技術和歸零原理技術設計出高對比度低雜訊的即時偵測影像式生物感測器,並且可針對不同的待測物來調整感測範圍。
      波導共振元件本身具有濾波的性質,除了在特定的共振波長下使穿透元件之光的穿透率為零,也會使穿透光的相位產生變化。因此當光通過此元件時會有偏振態的改變,再配合了歸零原理利用偏振片架構來改變穿透元件之穿透光的偏振態達到歸零的效果。最後利用極化對比技術降低CCD成像雜訊。本研究其理想檢測極限為4.865×10-5 RIU,線性檢測區間為1.339 RIU至1.3342 RIU。實際檢測極限達到1.008×10-4 RIU,線性檢測區間為1.336 RIU至1.3340 RIU,此系統可量測折射率1.33至1.365的鹽水,並且可藉由調整GMR共振波長,配合不同折射率的待測物設計最佳檢測曲線。


    In this thesis we develop a novel imaging type guided-mode resonance (GMR) biosensor. In the past few decades, biosensor was developed quickly and successfully. There are many different types of biosensors such as electrochemical biosensor, optical biosensor, and biocatalytic biosensor. Especially in optical biosensor, the imaging type biosensors such as multi-point imaging biosensor was developed rapidly because it offers the properties of quantitative bimolecular information and it is useful for direct visualization of cell behavior.
      This thesis is based on GMR biosensor and combining polarization contrast with nulling theory for designing the high-contrast and low-noise real-time imaging biosensor system. The system can also be designed different sensing area for different objects. The ideal limit of detection (LOD) of this system is 4.865×10-5 RIU and the linear operating range is from 1.339 RIU to1.3342 RIU. The actual LOD of the system is 1.008×10-4 RIU and the linear operating area from 1.336 RIU to1.3340RIU. The sensing range of this system is from 1.330 RIU to 1.365 RIU; moreover, the sensitivity can be designable for different objects by modulating the resonated wavelength of GMR.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 第一章 序論 1 1-1生物感測器 1 1-1.1生物感測器簡介 1 1-1.2生物感測器起源極發展 2 1-1.3生物感測器分類 4 1-2影像式生物感測器 6 1-3 GMR應用在生物感測器 10 1-4研究動機 13 第二章 影像式波導共振生物感測器原理 14 2-1波導共振元件理論 14 2-1.1光波導原理繞射 14 2-1.2光柵原理 16 2-1.3波導共振原理 17 2-1.4 TE和TM穿透光之相位差 19 2-2歸零原理(nulling) 20 2-3具歸零原理架構之影像式波導共振感測器操作原理 22 第三章模擬、製程與量測 28 3-1影像式波導共振感測器之模擬 28 3-1.1 GMR之模擬 28 3-1.2 歸零技術(nulling)之模擬 33 3-2 單晶片介紹波導共振元件之製程 35 3-2.1晶片製程 35 3-2.2微流道系統 37 3-3 影像式波導共振感測器之量測 39 第四章 實驗結果與討論 44 4-1 晶片製程 44 4-2光學模擬 45 4-3鹽水濃度之量測 58 第五章 結論與未來展望 63 5-1 結論 63 5-2未來展望 64 第六章 参考文獻 65

    [1] H.G. van der Poel, "Review Smart Drugs in Prostate Cancer, "European Urology45, 1–17 (2004).
    [2] 黃國華, "基因晶片與生物醫學, "科學發展 381,64-69 (2004).
    [3] M. Belz, W. J. O. Boyle, K. F. Klein, and K. T. V. Grattan, "Smart-sensor approach for a fibre-optic-based residual chlorine monitor," Sensor Actuat B-Chem 39, 380-385 (1997).
    [4] Y. S. Lee, D. S. Yoon, and T. S. Kim, "Improvement of the mass sensitivity in flexural plate wave biosensor based on PZT thin film," Integr Ferroelectr 69, 391-+ (2005).
    [5] T. S. Kim, G. Y. Kang, G. Y. Han, J. Y. Kang, I. H. Cho, H. H. Park, and S. H. Paek, "Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever," Sensor Actuat B-Chem 117, 332-338 (2006).
    [6] M. Mehrvar, C. Bis, J. M. Scharer, M. Moo-Young, and J. H. Luong, "Fiber-optic biosensors - Trends and advances," Anal Sci 16, 677-692 (2000).
    [7] B. Mizaikoff, R. Gobel, R. Krska, K. Taga, R. Kellner, M. Tacke, and A. Katzir, "Infrared Fiberoptic Chemical Sensors with Reactive Surface-Coatings," Sensor Actuat B-Chem 29, 58-63 (1995).
    [8] F. Sevilla, T. Kullick, and T. Scheper, "A Bio-Fet Sensor for Lactose Based on Co-Immobilized Beta-Galactosidase Glucose-Dehydrogenase," Biosens Bioelectron 9, 275-281 (1994).
    [9] A. N. Reshetilov, M. V. Donova, D. V. Dovbnya, A. M. Boronin, T. D. Leathers, and R. V. Greene, "FET-microbial sensor for xylose detection based on Gluconobacter oxydans cells," Biosens Bioelectron 11, 401-408 (1996).
    [10] N. M. Rao, A. Vijayalakshmi, Y. Tarunashree, B. Baruwati, S. V. Manorama, B. L. Narayana, and R. E. C. Johnson, "Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles," Biosens Bioelectron 23, 1708-1714 (2008).
    [11] J. Kondoh, and S. Shiokawa, "Measurements of Conductivity and Ph of Liquid Using Surface Acoustic-Wave Devices," Jpn J Appl Phys 1 31, 82-84 (1992).
    [12] K. Lange, F. Bender, A. Voigt, H. Gao, and M. Rapp, "A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection," Anal Chem 75, 5561-5566 (2003).
    [13] A. Malave, M. Perpeet, S. Glass, T. Gronewold, A. Kiwitz, I. Stoyanov, M.
    Tewes, and E. Quandt, "SAW sensor system for marker-free molecular interaction analysis," Anal Lett 39, 1747-1757 (2006).
    [14] J. C. Pyun, and B. J. Jeon, "Reconstruction of the Immunoaffinity Layer of SPR Biosensor by Using Proteolytic Enzyme," Biochip J 2, 269-273 (2008).
    [15] L. G. Carrascosa, A. Calle, and L. M. Lechuga, "Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer," Anal Bioanal Chem 393, 1173-1182 (2009).
    [16] Y. Mu, W. Jin, X. C. Lin, S. W. Lv, Y. Zhang, and Q. H. Jin, "A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection," Biosens Bioelectron 24, 1266-1269 (2009).
    [17] H. W. Huang, C. R. Tang, Y. L. Zeng, X. Y. Yu, B. Liao, X. D. Xia, P. G. Yi, and P. K. Chu, "Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods," Colloid Surface B 71, 96-101 (2009).
    [18] S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, "Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis," Journal of Biomedical Optics 10 (2005).
    [19] X. Q. Chen, and Q. A. Lv, "Phase-shift interferometry combined with surface plasmon resonance effect for two-dimensional bio-surface analysis," Optik 121, 818-820 (2010).
    [20] S. A. Shen, T. Liu, and J. H. Guo, "Optical phase-shift detection of surface plasmon resonance," Applied Optics 37, 1747-1751 (1998).
    [21] J. Homola, and M. Piliarik, "Self-referencing SPIR imaging for most demanding high-throughput screening applications," Sensors and Actuators B-Chemical 134, 353-355 (2008).
    [22] J. Homola, M. Piliarik, and M. Bockova, "Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma," Biosensors & Bioelectronics 26, 1656-1661 (2010).
    [23] J. Homola, M. Piliarik, and L. Parova, "High-throughput SPR sensor for food safety," Biosensors & Bioelectronics 24, 1399-1404 (2009).
    [24] J. Homola, M. Piliarik, and H. Vaisocherova, "A new surface plasmon resonance sensor for high-throughput screening applications," Biosensors & Bioelectronics 20, 2104-2110 (2005).
    [25] J. Homola, and S. S. Yee, "Novel polarization control scheme for spectral surface plasmon resonance sensors," Sensors and Actuators B-Chemical 51, 331-339 (1998).
    [26] J. Homola, M. Piliarik, and J. Katainen, "Novel polarization control for high-throughput surface plasmon resonance sensors," Proc. of SPIE Vol. 6585, 658515, (2007).
    [27] A. M. Ferrie, Q. Wu, and Y. Fang, "Resonant waveguide grating imager for live cell sensing," Applied Physics Letters 97 (2010).
    [28] L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, "A self-referencing method for microplate label-free photonic-crystal biosensors," Ieee Sensors Journal 6, 1551-1556 (2006).
    [29] B. T. Cunningham, L. L. Chan, S. L. Gosangari, and K. L. Watkin, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
    [30] B. T. Cunningham, L. L. Chan, P. Y. Li, and D. Puff, "Self-referenced assay method for photonic crystal biosensors: Application to small molecule analytes," Sensors and Actuators B-Chemical 120, 392-398 (2007).
    [31] 林聖富, "核酸適合體式光學波導共振生物感測器於凝血酶之檢測,"國立中央大學光電科學與工程學系研究所碩士論文, 2009.
    [32] R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, "Guided-mode resonant wave plates," Optics Letters 35, 2472-2474 (2010).
    [33] R. Magnusson, K. J. Lee, and D. Wawro, " Guided-mode resonance biosensors employing phase detection," Diffractive Optics and Micro-Optics, OSA Technical Digest (Optical Society of America, 2004), DTuC2.
    [34] S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, "Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis," Journal of Biomedical Optics 10 (2005).
    [35] Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, "Resonant waveguide grating biosensor for living cell sensing," Biophys J 91, 1925-1940 (2006).

    QR CODE
    :::