跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡暐珉
Wei-Ming Chien
論文名稱: 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析
Experimental Simulation and Analysis of Flow Visualization and Uniformity in a Planar SOFC Stack
指導教授: 施聖洋
Sheng-Yang Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 82
中文關鍵詞: 電池堆流率差異性流場均勻度外歧管固態氧化物燃料電池
外文關鍵詞: flow rate deviation., flow uniformity, external manifolds, Solid oxide fuel cell
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實驗的方法,量測外岐管(external manifold)設計之平板式固態氧化物燃料電池(solid oxide fuel cell, SOFC)短電池堆(short-stack)之流場特性,並分析與改善其流場均勻度。利用自行建立之水力測試平台,配合二維雷射誘導螢光法(laser-induced fluorescence, LIF)以及染液觀測(dye visualization, DV)法,分別獲得電池堆內各層含12個以肋條分隔之矩型流道(rib-channels)的流場影像,再利用Matlab進行影像處理與分析,進而量測計算電池內堆各層間所有流道之速度分佈及其流場均勻度。相互比較後,我們發現由DV與LIF,在雷諾數為25到100範圍內(Re = VDh/??,V為電池堆之平均流速、Dh為單一流道之水力直徑、?為運動黏滯係數(kinematic viscosity),之數據最大相差約10 %,顯示DV實驗法具備足夠的可靠度來進行相關之流場量測。電池堆進口區(feed header, FH)和出口區(exhaust header, EH)之流向配置為本研究重點,共有五種不同配置,含三種具同向之FH與EH以及兩種反向之FH與EH,分別依序簡述如下:(1) Conventional-type,即同向之FH與EH位於流道之流線方向(streamwise);(2)Z-type,即同向之FH與EH位於流道之翼展方向(spanwise);(3)TZ-type,即同向之FH與EH位於流道之橫向方向(transverse);(4)U-type,即反向之FH與EH位於流道之翼展方向(spanwise)和(5)TU-type,即反向之FH與EH位於流道之橫向方向(transverse)。實驗結果顯示,反向FH與EH之U-type之單電池流場均勻度約為61 % ~ 66 %,電池堆間流率的差異性約為4.8 %,是前述五種設計中較佳的設計。為了更進一步改善U-type之設計,在FH處加裝三角柱型的導流裝置,此種改良型的設計可將單電池的流場均勻度及電池堆流場均勻度各提升至少12 %,達約75%之流場均勻度,為一是種簡單有效提升流場均勻度之設計。在過去有限的文獻中,僅有以數值模擬來討論單電池之流場均勻度,本研究首次以實驗的方法來討論電池堆的流場均勻度,冀望對未來電池堆的發展有所助益。


    This thesis investigates experimentally flow distributions in a planar SOFC short-stack using various designs of external manifolds and thus increases flow uniformity of the short-stack. A hydraulic platform combined with laser-induced fluorescence (LIF) and dye visualization (DV) techniques are established to obtain flow fields in the short-stack including three layers, each layer having 12 rib-channels. A Matlab-based code is used to process these flow field images by the binary method and thus corresponding velocities in each of 12 channels for all three different layers can be extracted. Results from both LIF and DV methods are roughly the same with the largest difference up to 10 %, when the channel Reynolds number(Re = VDh/???are within 25~100, where V is the velocity, Dh is the hydraulic diameter of the rib channel, and ? is the kinematic viscosity of fluid. The focus is placed on the effect of different flow directions in both the feed header (FH) and the exhaust header (EH) to flow uniformity of the short-stack. There are five arrangements: (1) The Conventional-type, where both FH and EH are in the same streamwise direction of flow channels; (2) Z-type, where FH and EH are in the same spanwise direction of flow channels; (3) TZ-type, both FH and EH in the same transverse direction of flow channels; (4) U-type, similar to (2) but FH and EH are in opposite directions; (5) TU-type, similar to (3) but FH and EH are in opposite directions. These experimental results show that the fourth design (U-type) has the best flow uniformity among all different designs. In attempt to further improve flow uniformity of the U-type design, a triangular pyramid is placed in the feed header, which can further increase flow uniformity in each layer of the short-stack. Based on the best knowledge of the author, the present study is the first experimental measurement on the flow distributions in the short-stack of planar SOFC and should be useful for numerical simulations.

    第一章 前言 1 1.1研究動機 1 1.2問題所在 3 1.3解決方法 4 1.4論文概要 5 2.1 SOFC的操作原理 7 2.1.1 電解質 7 2.1.2 觸媒與電極 9 2.1.3電極支撐型與電解質支撐型SOFC 10 2.1.4 三相邊界 11 2.1.5集電層概念應用 11 2.2 SOFC的發展 12 2.2.1 SOFC的歷史與發展現況 12 2.2.2 電池堆與發電成本 14 2.3流場特性分析之相關研究 15 2.3.1 影響流場特性因子 16 2.3.2流場特性與其他傳輸現象之相互關係 18 2.3.3電池堆的流場均勻度 19 2.4 流場可視化方法 19 第三章 實驗設備與實驗方法 26 3.1 液態流場觀測水力平台 26 3.2 電池堆設計製作 27 3.3 染劑觀測方法 29 3.3.1螢光染劑觀測實驗方法 29 3.3.2藍色染劑觀測實驗方法 30 3.3.3影像截取 31 3.4 影像與速度分析方法 32 3.5 數值模擬 34 3.5.1 CFD軟體簡介 34 3.5.2 數值模擬模型 35 3.5.3 統御方程式 35 3.5.4 邊界條件設定 36 第四章 結果與討論 42 4.1 流場均勻度與壓力分佈 42 4.2誤差分析 43 4.3 螢光染劑觀察法與藍色染液觀察法的誤差比較 45 4.4 U-type、Z-type與Conventional-type之流場均勻度分析 46 4.4.1 實驗測試 46 4.4.2 數值模擬結果 48 4.5 垂直型U-type與Z-type流場均勻度分析 49 4.6 U-type加上三角型導流裝置之流場均勻度分析 50 4.7 文獻比較 51 4.8 入口區寬度對流場均勻度的影響 52 4.9 雷諾數與流場均勻度之關係 52 第五章 結論與未來工作 75 5.1 結論 75 5.1.1 電池堆流場觀測法 75 5.1.2 幾種進出口設計的流場均勻性比較 75 5.1.3 流場均勻性的較佳化 76 5.2 未來工作 76 5.2.1 流場均勻性的最佳化 76 5.2.2 電池堆流場均勻度的測試 76 5.2.3 實體電池系統的架設 77 參考文獻 78

    [1] Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel cells – fundamentals and applications”, Fuel Cells, Vol. 1, pp. 5-39 (2001)
    [2] Gergor, H. Fuel cell technology handbook. CRC Press(2003).
    [3] Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiely & Sons, Ltd, Chichester, England (2000).
    [4] Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J. and Deutschmann, O. “Methane reforming kinetics within a Ni–YSZ SOFC anode support,” App. Catal., A: Gen. 295, 40-51 (2005).
    [5] Singhal, S. C. and Kendall, K. High temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, Kidlington (2003).
    [6] Stambouli, A. B. and Traversa, E. “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy,” Renew. Sust. Energy Rev. 6, 433-455 (2002).
    [7] Larminie, J. and Dicks, A. Fuel Cell Systems Explained. John Wiely & Sons, Ltd, Chichester, England (2000).
    [8] O’Hayre, R., Barnett, D.M. and Prinzc, F.B. “The Triple Phase Boundary - A Mathematical Model and Experimental Investigations for Fuel Cells,” J. Electrochem. Soc. 152(2), A439-A444 (2005).
    [9] Mizusaki, J., Tagawa, H., Tsuneyoshi, K. and Sawata, A. “Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3/YSZ,” J. Electrochem. Soc. 138, 1867-1873 (1991).
    [10] Deng, X. and Petric, A. “Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells,” J. Power Sources 140, 297-303 (2005).
    [11] Pyke, S. H., Howard, P. J. and Leah, R. T. “Planar SOFC technology : stack design and development for lower cost and manufacturability,” DTI research report, DTI/Pub URN 02/1350 (2002).
    [12] Jung, H.Y., Choi, S.H., Kim, H., Son, J.W., Kim, J., Lee, H.W. and Lee J.H. “Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells.” J. Power Sources 159, 478-483 (2006).
    [13] Gregor, H. Fuel cell technology handbook. CRC Press (2003).
    [14] Vielstich, W., Lamm, A. and Gasteiger, H. A. Handbook of Fuel Cells: Fundamentals Technology and Applications. John Wiely & Sons, Ltd, Chichester, England (2003).
    [15] Yakabe, H., Ogiwara, T., Hishinuma, M. and Yasuda, I. “3-D model calculation for planar SOFC,” J. Power Sources 102, 144-154 (2001).
    [16] de Haart, L. G. J., Vinke, I. C., Janke, A., Ringel, H. and Tietz, F. In: Yokpawa, H., and Singhal, S. C., (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc. The Electrochemical Society, Pennington, New Jersey, PV2001-16, 111 (2001).
    [17] Hwang, J. J., Chen, C. K. and Lai, D. Y. “Detailed characteristic comparison between planar and MOLB-type SOFCs,” J. Power Sources 143, 75-83 (2005).
    [18] Schmidt, M. The Hexis Project : Decentralised electricity generation with waste heat utilisation in the household. Fuel Cells Bulletin. 1, 9-11 (1998).
    [19] Gardner, F. J., Day, M. J., Brandon, N. P., Pashley, M. N. and Cassidy, M. “SOFC technology development at Rolls-Royce,” J. Power Sources 86, 122-129 (2000).
    [20] Thijssen, Jan H.J.S. and Thijssen, J. “The impact of scale-up and production volume on SOFC manufacturing cost,” NETL Report, http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/refshelf.html (2007).
    [21] 顏正和,平板式固態氧化物燃料電池雙極板之流道設計與流場觀測,國立中央大學機械工程系,碩士論文,2004年。
    [22] Huang, C.M., Shy, S.S. and Lee, C.H. “Experimental and numerical studies on flow uniformity in interconnects and is influence to a single planar solid oxide fuel cell,” ECS Transaction, vol. 7, no. 1, 1849-1859 (2007).
    [23] Bassiouny, M. K. and Martin, H. “Flow distribution and pressure drop in plate heat exchangers I; U-type arrangement,” Chem. Engin. Sci. 39, 693-700 (1984).
    [24] Bassiouny, M. K. and Martin, H. “Flow distribution and pressure drop in plate heat exchangers I; Z-type arrangement,” Chem. Engin. Sci. 39, 701-704 (1984).
    [25] Boersma, R. J. and Sammes, N. M. “Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks,” J. Power Sources 63, 215-218 (1996).
    [26] Boersma, R. J. and Sammes, N. M. “Distribution of gas flow in internally manifolded solid oxide fuel cell stacks,” J. Power Sources 66, 41-45 (1997).
    [27] Kee, R. J., Korada, P., Walters, K. and Pavol, M. “A generalized model of the flow distribution in channel networks of planar fuel cells,” J. Power Sources 109, 148-159 (2002).
    [28] Maharudrayya, S., Jayanti, S. and Deshpande, A. P. “Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells,” J. Power Sources 144, 94-106 (2005).
    [29] Kim, S., Choi, E. and Cho, Y. I. “The effect of header shapes on the flow distribution in a manifold for electronic packaging applications,” Int. Comm. Heat Mass Transfer 22, 329-341 (1995).
    [30] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R. and Khaleel, M. A. “Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks,” J. Power Sources 113, 109-114 (2003).
    [31] Chyou, Y. P., Chung, T. D., Chan, J. S. and Shie, R. F. “Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell,” J. Power Sources 139, 126-140 (2005).
    [32] Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y. and Nagata, S. “Performance analysis of planar-type unit SOFC considering current and temperature distributions,” Solid State Ionics 132, 297-308 (2000).
    [33] Hirata, H. and Hori , M. “Gas-flow uniformity and cell performance in a molten carbonate fuel cell stack,” J. Power Sources 63, 115-120 (1996).
    [34] Huang, W. L. and Zhu, Q. “Flow distribution in U-type layers or stacks of planar fuel cells,” J. Power Sources 178, 353-362 (2008).
    [35] Bengoa, C., Montillet, A., Legentilhomme, P. and Legrand, J. “Flow visualization and modelling of a filter-press type electrochemical reactor,” J. Appl. Electrochem. 27, 1313-1322 (1997).
    [36] Dohle, H., Jung, R., Kimiaie, N., Mergel J. and Muller, M. “Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells-experiments and simulation studies,” J. Power Sources 124, 371-384 (2003).
    [37] Barreras, F., Lozano, A., Vali˜no, L., Mar´ın, C. and Pascau, A. “Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies,” J. Power Sources 144, 54-66 (2005).
    [38] Maharudrayya, S., Jayanti, S. and Deshpande, A. P. “Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks,” J. Power Sources 157, 358-367 (2006).
    [39] Chen, C. H., Jung, S. P. and Yen, S. C. “Flow distribution in the manifold of PEM fuel cell stack,” J. Power Sources 173, 249-263 (2007).

    QR CODE
    :::