跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱匯吟
Hui-Yin Chiu
論文名稱: A Dynamic Contrast-enhanced MRI-based Numerical Simulation Technique for Early Detection of Chronic Liver Diseases
指導教授: 黃楓南
Feng-Nan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 肝纖維化達西方程擴散對流方程式穩定性有限元素法混淆矩陣時間-信號強度曲線接收者操作特徵曲線
外文關鍵詞: liver fibrosis, Darcy's euqation, unsteady convection-diffusion equation, stabilized finite element, confusion matrix, Time-Intensity curve, Receiver Operating Characteristics
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝臟是人體的重要器官,負責許多生理所需功能,但近幾年肝臟疾病已躍升為前十大死亡因素。一般來說,慢性肝病可大致分為幾個漸進式階段: 纖維化、硬化、癌症。臨床上已發展出許多診斷與偵測的方式,伴隨著科技的發展,電腦輔助系統也逐漸在進步。研究上,我們傾向可以發展出非侵入性的偵測方法,以期應用於疾病之早期診斷。核磁共振造影是目前醫學影像上迅速進展的技術,在肝臟的掃描上通常會搭配顯影劑以提高準確度。本研究目標即運用數學建模的方式擬合動態顯影磁振造影之曲線,考慮血液為牛頓流體;組織為均質且各向同性,方程模型為達西方程式搭配與時間相關之擴散對流方程式,並在演算法中引用機
    器學習相關概念來做效能評估。最後,我們將提出如何決定肝臟纖維化分期之方法,在早期診斷方面可達九成準確度。


    The liver is an important organ of human beings, it supports many functional mechanisms. Hepatic diseases are listed as top 10 life-threatening in many Asian countries. Generally speaking, there are three common hepatopathies for liver diseases: fibrosis, cirrhosis,
    cancer. Although a number of medical tests have developed, computer-aided diagnosis still keeps improving. We prefer to establish the non-invasive treatment of a diagnostic system for early detection. Magnetic Resonance Imaging (MRI) is a promising imaging
    test nowadays. This technique provides an alternative with adding contrast agent can help to diagnose the liver diseases. The target of this research is to fit the signal enhancement curve of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) through mathematical modeling. Assume that the blood is Newtonian and viscous; tissue is treated as homogeneous, isotropic porous media and the governing equations are Darcy equation weakly coupled with unsteady convection-diffusion equation. The solution algorithm is proposed based on the concept of machine learning. As a result, we proposed an approach
    to determine the fibrosis stage. The optimal value of porosity may be a useful index for early detection and obtained approximately 90% accuracy.

    Tables . . . . . . . . . . . . . . . . . . . . . . . ix Figures . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . 1 2 Governing Equations and Numerical Methods . . . . . 5 2.1 Problem Description . . . . . . . . . . . . . . . 5 2.2 Mathematical Model . . . . . . . . . . . . . . . . 5 2.2.1 Darcy’s Equation Weakly Coupled with Convective-Diffusive Equation . . . . . . . . . . . . . . . . . . 5 2.3 Stabilized Finite Element Method . . . . . . . . . 7 2.3.1 Stabilized Mixed Finite Element . . . . . . . . 7 2.3.2 Streamline Upwind Petrov-Galerkin Finite Element 8 2.3.3 Finite Element Method . . . . . . . . . . . . . 9 2.3.4 Data Representation for Triangular Element . . . 10 3 Solution Algorithm for Diagnostic System . . . . . . 12 3.1 Case Study and MATLAB Implementation . . . . . . . 12 3.1.1 Test Case for Darcy’s Equation . . . . . . . . . 12 3.1.2 Test Case for Unsteady Convection-Diffusion Equation . . . . . . . . . . . . . . .. . . . . . . . 13 3.1.3 Implementation . . . . . . . . . . . . . . . . . 14 3.2 Data Set . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Classification of Data . . . . . . . . . . . . . 15 vii3.2.2 Confusion Matrix . . . . . . . . . . . . . . 15 3.2.3 Database and Procedure . . . . . . . . . . . . . 16 3.3 Parametric Study . . . . . . . . . . . . . . . . . 19 3.3.1 Criteria for Learning Procedure . . . . . . . . 19 3.3.2 Optimal Porosity . . . . . . . . . . . . . . . . 19 4 Clinical Practice . . . . . . . . . . . . . . . . . 20 4.1 Graphical Representation . . . . . . . . . . . . . 20 4.1.1 Time-Intensity Curve . . . . . . . . . . . . . . 20 4.1.2 Receiver Operating Characteristics Analysis . . 21 4.2 Experimental Results . . . . . . . . . . . . . . . 21 4.3 Evaluation of Test Performance . . . . . . . . . . 26 5 Conclusion and Future Work . . . . . . . . . . . . . 28

    [1] JE A., Tore G., and Knut–Andreas L. An Introduction to the Numerics of Flow in
    Porous Media using Matlab, chapter 3, pages 265–306. Springer, 2007.
    [2] Jochen A., Carsten C., and Stefan A. Funken. Remarks around 50 lines of Matlab:
    short finite element implementation, chapter 20, page 117–137. Science Publishers,
    1999.
    [3] A. Bonfiglio, K. Leungchavaphongse, R. Repetto, and J. H. Siggers. Mathematical
    modeling of the circulation in the liver lobule. J. Biomech. Eng., 132:111011, 2010.
    [4] I. Campbell. Liver: functional anatomy and blood supply. Anaesthesia & intensive
    care medicine, 7:49–51, 2006.
    [5] E. Cholongitas, M. Senzolo, R. Standish, L. Marelli, A. Quaglia, D. Patch, Amar P.
    Dhillon, and Andrew K. Burroughs. A systematic review of the quality of liver
    biopsy specimens. Am. J. Clin. Pathol., 125:710–721, 2006.
    [6] K. Coenegrachts. Magnetic resonance imaging of the liver: New imaging strategies
    for evaluating focal liver lesions. World J. Radiol., 1:72, 2009.
    [7] Countincr. File:Stage of liver damage.JPG. Wikimedia Commons, 2007.
    [8] C. Debbaut, J. Vierendeels, C. Casteleyn, P. Cornillie, D. Van Loo, P. Simoens,
    L. Van Hoorebeke, D. Monbaliu, and P. Segers. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J. Biomech. Eng., 134:011003, 2012.
    [9] M. Eatesam, Susan M. Noworolski, Phyllis C. Tien, M. Nystrom, Jennifer L. Dodge,
    Raphael B. Merriman, and A. Qayyum. Liver diffusivity in healthy volunteers and
    patients with chronic liver disease: Comparison of breathhold and free-breathing
    techniques. J. Magn. Reson. Imag., 35:103–109, 2012.
    [10] M. El-Hariri, Tamer F. Taha Ali, and Hala IM Hussien. Apparent diffusion coefficient (ADC) in liver fibrosis: usefulness of normalized ADC using the spleen as
    reference organ. The Egyptian Journal of Radiology and Nuclear Medicine, 44:441–
    451, 2013.
    [11] T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Machine Learning, 2003.
    [12] T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861–874,
    2006.
    [13] Leopoldo P. Franca and F-N Hwang. Refining the submesh strategy in the twolevel finite element method: application to the advection–diffusion equation. Int. J.
    Numer. Meth. Fluid, 39:161–187, 2002.
    [14] Marc G. Ghany, Doris B. Strader, David L. Thomas, and Leonard B. Seeff. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology, 49:1335–
    1374, 2009.
    [15] Y. Gordon, Sasan Partovi, M. Muller-Eschner, E. Amarteifio, Tobias B ¨ auerle, Marc- ¨
    Andre Weber, Hans-Ulrich Kauczor, and F. Rengier. Dynamic contrast-enhanced ´
    magnetic resonance imaging: fundamentals and application to the evaluation of the
    peripheral perfusion. Cardiovasc. Diagn. Ther., 4:147, 2014.
    [16] Y. Goto, K. Okuda, G. Akasu, H. Kinoshita, and H. Tanaka. Noninvasive diagnosis
    of compensated cirrhosis using an analysis of the time–intensity curve portal vein
    slope gradient on contrast-enhanced ultrasonography. Surg. Today, 44:1496–1505,
    2014.
    [17] K. Hajian-Tilaki. Receiver operating characteristic (ROC) curve analysis for medical
    diagnostic test evaluation. Caspian Journal of Internal Medicine, 4:627, 2013.
    [18] Barry G. Hansford, Y. Peng, Y. Jiang, Michael W. Vannier, T. Antic, S. Thomas,
    S. McCann, and A. Oto. Dynamic contrast-enhanced MR imaging curve-type analysis: is it helpful in the differentiation of prostate cancer from healthy peripheral
    zone? Radiology, 275(2):448–457, 2015.
    [19] http://arizonatransplant.railsplayground.net/healthtopics/liver.html. Health Topics.
    Arizona Transplant Associates, PC, 2007.
    [20] C-H Jain. Mathematical Modeling and Numerical Simulation for Application of
    DCE-MRI in Early Detection of Chronic Liver Disease. Master’s thesis, National
    Central University, 2015.
    [21] V. John and E. Schmeyer. Finite element methods for time-dependent convection–
    diffusion–reaction equations with small diffusion. Comput. Meth. Appl. Mech. Eng.,
    198:475–494, 2008.
    [22] David E. Johnston. Special considerations in interpreting liver function tests. Am.
    Fam. Physician, 59:2223–2232, 1999.
    [23] C. Lavini, Maarten S. Buiter, and M. Maas. Use of dynamic contrast enhanced
    time intensity curve shape analysis in MRI: theory and practice. Rep. Med. Imag.,
    6:71–82, 2013.
    [24] A. Masud and T. JR. Hughes. A stabilized mixed finite element method for Darcy
    flow. Comput. Meth. Appl. Mech. Eng., 191:4341–4370, 2002.
    [25] R. MATERNE, Bernard E. VAN BEERS, Anne M. SMITH, I. Leconte, J. Jamart,
    Jean-Paul Dehoux, Andre Keyeux, and Y. Horsmans. Non-invasive quantifica- ´
    tion of liver perfusion with dynamic computed tomography and a dual-input onecompartmental model. Clinical Science, 99:517–525, 2000.
    [26] V. Mitra and J. Metcalf. Functional anatomy and blood supply of the liver. Anaesthesia & intensive care medicine, 13:52–53, 2012.
    [27] JPB O’Connor, PS Tofts, KA Miles, LM Parkes, G. Thompson, and A. Jackson.
    Dynamic contrast-enhanced imaging techniques: CT and MRI. The British Journal
    of Radiology, 84:S112–S120, 2011.
    [28] T. Rahman and J. Valdman. Fast MATLAB assembly of FEM matrices in 2D and
    3D: Nodal elements. Appl. Math. Comput., 219:7151–7158, 2013.
    [29] B. Taouli and Dow-Mu Koh. Diffusion-weighted MR imaging of the liver. Radiology, 254:47–66, 2009.
    [30] H. Tchelepi, Philip W. Ralls, R. Radin, and E. Grant. Sonography of diffuse liver
    disease. J. Ultrasound Med., 21:1023–1032, 2002.

    QR CODE
    :::