跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周濤
Tao Chou
論文名稱: 利用WRF3DVAR同化GPS折射率資料探討
指導教授: 黃清勇
Ching-Yuang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 94
語文別: 中文
論文頁數: 99
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用WRF3DVAR,將GPS掩星資料及傳統觀測資料同化於中尺度模式之中,藉由此方法了解同化折射率對於數值模擬預報結果的影響。本文將使用CHAMP 的衛星觀測資料,選取兩個颱風個案分別為海棠(2005)以及敏督利(2004)進行模擬,將每一個颱風作數組模擬,主要分為沒有同化GPS掩星資料,以及在初始場加入GPS掩星觀測資料同化的,另外還有在初始場加入GPS掩星觀測資料同化並且在之後加入GPS掩星觀測資料做cycling來分別模擬。模擬的結果發現對於路徑的影響較小,而對於水氣方面比較有明顯的修正。而在差異增量可以瞭解折射率在水氣方面有較大的回饋,在溫度方面回饋較小。
    由於CHAMP衛星的掩星觀測資料只能提供水汽跟溫度的資料,缺乏風場資料,因此由QuikSCAT衛星提供的海面風場可作為一觀測資料同化到模式中,本篇透過同化掩星資料及QuikSCAT風場資料到WRF模式中,模擬2005年的海棠颱風及2004年的敏督利颱風去探討同化掩星資料及同化QuikSCAT風場對預報的影響,發現模式同化掩星資料後,主要在水氣方面有影響,同化QuikSCAT風場可使降雨特徵更加接近觀測值。


    In this study, the Weather Research and Forecasting (WRF) Model with three-dimensional data assimilation (3DVAR) is utilized to investigate influences of GPS occultation refractivity on simulations of typhoons past Taiwan. Two recent cases were simulated, including Typhoon Mindulle in June 2004 and Typhoon Haitang in July 2005. The GPS observation data are taken from CHAMP satellites that provide several retrieved refractivity profiles in the simulated domain near the initialization time and cycling time. As compare to the impacts between the simulated results with and without GPS occultation refractivity assimilation, we choose several experiments to examine the impacts of GPS refractivity. The results of model simulated indicated the GPS data have benefit in terms of the water vapor.
    Although GPS data can provide useful information on the thermodynamic variables, they lack the ability to measure wind. Wind information may play a dominant role in an assimilated vortex through geostrophic adjustment of the pressure field to the ingested wind field in low latitudes. So, we ingest observed NASA Quick Scatterometer (QuikSCAT) near-surface wind data into the model. The result displays the further improved in the accumulated rainfall.

    第一章、序論 1 1.1 前言 1 1.2文獻回顧 2 1.3 研究動機 4 第二章、研究方法與分析方法 6 2.1資料來源 6 2.2 分析方法與模式介紹 7 2.2.1 WRF模式介紹及其3DVAR系統 7 2.2.2 3DVAR方法介紹 10 2.2.3 GPS掩星技術介紹 12 第三章、海棠颱風模擬結果與討論 13 3.1 個案描述與實驗設計 13 3.1.1 海棠個案描述 13 3.1.2 海棠個案實驗設計 14 3.2 海棠個案模擬結果 15 3.2.1 路徑模擬結果 15 3.2.2 降水模擬結果 17 3.2.2 同化QuikSCAT模擬結果 19 3.2.3 挪後十二小時模擬 20 3.3 敏感度測試 22 第四章、敏督利颱風模擬結果與討論 24 4.1 個案描述與實驗設計 24 4.1.1 敏督利個案描述 24 4.1.2 敏督利個案實驗設計 25 4.2 敏督利個案模擬結果 25 4.2.1 同化QuikSCAT模擬結果 27 4.3 敏感度測試 28 第五章、結論與未來展望 29 參考文獻 31

    陳正祥,1957:台灣氣候之分類。氣象學報,第三卷第二期,1-7頁。
    余嘉裕、周佳、涂建翊,2003:台灣的氣候,遠足文化出版,104頁。
    謝信良、王時鼎、鄭明典、葉天降,1998:百年侵台颱風路徑圖集及其應用。中央氣象局,台北。
    黃清勇,2004:華衛三號/COSMIC資料驗證與短期天氣及氣候預報應用研究子--計畫三:GPS衛星資料同化之區域天氣預報研究,15頁。
    黃清勇、朱延祥,2004年:FORMOSAT-3/COSMIC科學研究簡介。『大氣科學』,32, 293-328。
    王潔如,2004:侵台颱風之GPS折射率3DVAR資料同化及數值模擬。國立中央大學碩士論文。
    Barker, D., W. Huang, Y.-R. Guo and Al. Bourgeois, 2003: A Three-Dimensional Variational (3DVAR) Data Assimilation System for Use with MM5. NCAR Technical Note (NCAR/TN-453+STR), 68 pp.
    Huang, C.-Y., Y.-H. Kuo and W. Huang, 2002: Numerical simulations with MM5 3D-VAR initialization. TAO, 13, 417-448.
    Huang, C.-Y., S.-Y. Chen, Y.-R. Guo, Y.-H. Kuo and S.-H. Chen, 2004b:
    Typhoon predictions using WRF with 3DVAR: GPS Refractivity
    Assimilation for ROCSAT-3/ COSMIC. Proc. of WRF Workshop
    2004 in Taiwan, 21-22 September, Central Weather Bureau, Taipei,
    69-74.
    Huang, C.-Y., Y.-H. Kuo, and S.-H. Chen, 2005:Improvements on Typhoon Forecast with Assimilated GPS Occultation Refractivity Weather and Forecasting, 20, 6, 931–953.
    Kursinki, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995: Observing tropospheric water vapor by radio occultation using the global positioning system, Geophs. Res. Letter, 22, No. 17, 2365-2368.
    Kuo, Y.-H., X. Zou, S. J. Chen, W. Huang, Y.-R. Guo, R. A. Anthes, M. Exner, D. Hunt, C. Rocken, and S. Sokolovskiy, 1997a: A GPS/MET sounding through an intense upper-level front, Bulletin of the Amer. Meteor. Soc., 79, 617-626.
    Kuo, Y.-H.,T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and Error estimation of GPS radio occultation data. J. Meteor. Soc. Japan., 82 , 507-531
    Thayer, D., 1974: An improved equation for the radio refractive inde of air. Radio Sci., 9, 803-807.
    Ware, R., and Co-authors, 1996: GPS soundings of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
    Yunck, T. P.,C.-H. Liu, and R. Ware, 2000: A History of GPS Sounding. TAO, 11, 1-20.
    Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2249.
    Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C. Chang, J. G. Sela, and R. Anthes, 1999: A raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. Journal Geophysical Research, Atmospheres, 104, 22, 301-22, 318.
    Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y.-J. Zhu, 2000: Use of GPS/MET refraction angles in 3D variational analysis. Quarterly Journal Royal Meteorological Society, 126, 3013-3040.
    Zou, X., H. Liu, and R. A. Anthes, 2002: A statistical estimate of errors in the calculation of radio occultation bending angles caused by a 2D approximation of raytracing and the assumption of spherical symmetry of the atmosphere. Journal of Atmospheric and Oceanic Technology, 19, 51-64.

    QR CODE
    :::