跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭釜瑜
FU-YU KUO
論文名稱: 壓配合應力對於矯正釘植入齒槽骨之初期穩定度影響
指導教授: 黃俊仁
Jiun-Ren Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 118
中文關鍵詞: 矯正釘有限元素分析壓配合應力初期穩定度生物力學響應
外文關鍵詞: Mini-implant, Finite Element Analysis, Press-fit Stress, Primary Stability, Biomechanical Response
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矯正釘為齒顎矯正最常搭配使用的技術之一。矯正釘在植入齒槽後即可施加牽引力,矯正釘初期穩定度越佳則更能夠承受牽引力,進一步提高矯正釘成功率,因此初期穩定度相當重要。由於對矯正釘植入齒槽骨後難以進行受力情形追蹤,因此有限元素分析法被廣泛用於矯正釘初期穩定度的評估。齒槽骨與矯正釘表面間的壓配合應力對初期穩定度有重大影響,過去的文獻中對其他生醫植入物初始穩定度評估會在有限元素分析中設定壓配合應力,然而沒有文獻針對矯正釘初始穩定度的評估提出合理的壓配合應力設定方式。本研究將透過扭力實驗量測使矯正釘滑動的臨界力矩,藉以利用預壓力的方式來建立具壓配合應力的有限元素分析模型。並探討不同植入深度(5.2 mm、7.2 mm)旋入及旋出扭力實驗之力矩趨勢。在有限元素分析中,分別對有、無壓配合應力模型施加不同傾角與方位角的側向力以探討矯正釘及骨頭的生物力學響應,進行矯正釘初期穩定度評估。最後,比較及討論不同壓配合應力模擬方式之差異。本研究使用 2 mm 公稱直徑市售矯正釘,植入人造骨後產生滑動所需的力矩為 142.2 N⋅mm。有限元素分析模型中,要模擬此矯正釘與骨頭間的壓配合應力所需設定的預壓力為 135.5 MPa。分析結果顯示,相較於一般模型,有壓配合應力模型中矯正牙釘位移變為原本的 0.72 ~ 0.77 倍,而骨頭的應力與應變則是分別增加為 6.52 ~ 10.34 倍與 9.82 ~ 10.32 倍,其中應變數值大於 4000 με小於 25000 με此應變會影響骨整合但不會立刻破壞骨頭。有限元素分析時若不考慮壓配合應力,則骨頭應力及應變與矯正釘的初期穩定度會被低估。有、無壓配合應力模型在側向力傾角為 0°時皆產生矯正釘位移最大值。側向力傾角為 0°時骨頭等效應變、最大主應力、最小主應力皆大於側向力傾角為-30°、+30°者,無壓配合應力模型則無上述趨勢。此外,壓配合應力模型預壓力大小與作用位置的相關性弱。本研究之限制包括採用等向性材料性質、壓配合應力模型中預壓力大小對應到的應力鬆弛時間較短、預壓力作用位置與大小等,這些問題皆需要進一步探討。


    In recent years, mini-implants have been one of the most commonly used techniques in orthodontic surgery. Orthodontic force can be applied to the mini-implant right after the fixation on alveolar bone. As the primary stability of mini-implant becomes higher, the capability of force resistance will also increase, and this influences the success rate significantly. However, observing mini-implant fixation state after implantation is difficult, so finite element analysis has been widely used for mini-implant stability assessment.

    Primary stability is significantly influenced by press-fit stress on the contact surface between alveolar bone and mini-implant. The studies showed the method sets up press-fit stress in primary stability assessment on a variety of biomechanical implants. However, there is no evidence showing standardized methodology to set up press-fit stress in mini-implant primary stability assessment. This study demonstrated the torque test to measure critical moment enabling mini-implant sliding in order to set up press-fit stress finite element analysis models by adding pre-stress, and discussed insertion torque and removal torque with different implantation depths (5.2 mm, 7.2 mm). Forces with different direction angles and elevation angles will be applied to finite element analysis models with and without press-fit stress respectively to gain insight into biomechanical response, and further assess mini-implant primary stability by comparing simulation results with different kinds of press-fit stress setup. The torque value causing commercially available mini-implants whose diameter is 2 mm to slide is 142.2 N⋅mm. The pre-pressure value, simulating the pressure between mini-implants and bone is 135.5 MPa. The results show that deformations of Mini-implants are 23 ~ 27% lower, stress of bone is 5.95 ~ 9.72 times greater, and strain of bone is 9.14 ~ 9.83 times greater in models with press-fit stress than in those without press-fit stress on average. The value of strain is greater than 4000 μ which will affect osseointegration in the long term, and smaller than 25000 μ which can prevent bone from immediate fracture. In particular, bone strain and stress, as well as mini-implant primary stability, are likely underestimated in models lacking Press-fit Stress. The maximum value of mini-implant deformation occurred at a 0° elevation angle in both models. Bone strain and stress maximum values are found to be greater in the 0° force elevation angle model than in the -30°+30° ones with press-fit stress. The trends were not found in models without press-fit stress, however. Besides, the correlation between pre-pressure and its location is weak. The limitations of this study include the usage of isotropic material properties; time of stress-relaxation is short corresponding to pre-pressure value in press-fit stress models; correlation of pre-pressure and its applied location. The above problems need to be further investigated.

    摘要.............................................................................................................................................i Abstract......................................................................................................................................iii 誌謝............................................................................................................................................v 表目錄.......................................................................................................................................ix 圖目錄........................................................................................................................................x 第一章 緒論........................................................................................................................1 1-1 研究背景與動機.............................................................................................................1 1-2 齒顎矯正手術發展.........................................................................................................2 1-3 矯正釘之發展.................................................................................................................3 1-4 矯正釘錨定與穩定度.....................................................................................................3 1-6 有限元素法於生物力學之應用.....................................................................................6 1-7 研究目的.........................................................................................................................7 1-8 本文架構.........................................................................................................................8 第二章 文獻回顧................................................................................................................9 2-1 矯正釘與骨頭之材料特性.............................................................................................9 2-2 矯正釘設計研究........................................................................................................... 11 2-3 齒顎矯正作用力矩.......................................................................................................12 2-4 骨頭對矯正釘穩定度影響...........................................................................................14 2-5 生醫植入物之壓配合應力...........................................................................................18 2-6 矯正釘穩定度分析.......................................................................................................25 2-7 矯正釘測試規範 ASTM F543-17 ................................................................................26 第三章 研究方法..............................................................................................................27 3-1 研究流程.......................................................................................................................27 3-2 旋入與旋出力矩實驗...................................................................................................30 3-2-1 實驗器材與材料 ............................................................................................... 30 3-2-2 實驗流程細部說明 ...........................................................................................33 3-3 有限元素分析...............................................................................................................36 3-3-1 有限元素法分析步驟 ........................................................................................37 3-3-2 矯正釘與人造骨不同植入深度組合件建模 .................................................... 38 3-3-3 材料性質設定 ................................................................................................... 39 3-3-4 接觸條件設定 ...................................................................................................40 3-3-5 元素及網格設定 ...............................................................................................41 3-3-6 分析結果之指標選用 .......................................................................................44 3-3-7 有限元素法之收斂性分析原理 .......................................................................46 第四章 結果與討論..........................................................................................................47 4-1 矯正釘扭力實驗結果...................................................................................................47 4-1-1 旋入臨界力矩 ...................................................................................................47 4-1-2 旋出臨界力矩 ...................................................................................................49 4-2 建立具有壓配合應力之有限元素分析模型...............................................................53 4-2-1 有限元素分析之收斂性 ...................................................................................53 4-2-2 求出模型預壓力 ...............................................................................................54 4-2-3 不同預壓力作用位置與壓配合應力大小關係 ...............................................56 4-3 矯正釘及骨頭的生物力學響應...................................................................................56 4-3-1 三種側向力傾角有無壓配合應力模型求解差異 ............................................57 4-3-2 四種側向力方位角有無壓配合應力模型求解差異 .......................................69 4-3-3 四種側向力方位角模型對稱性 .......................................................................84 4-4 不同壓配合應力模擬方式之差異...............................................................................90 第五章 結論與未來研究方向..........................................................................................92 5-1 結論................................................................................................................................92 5-2 未來研究方向................................................................................................................94 參考文獻..................................................................................................................................96

    1. 2026 年 , 隱 形 齒 列 矯 正 器 市 場 估 計 將 達 到 82 億 美 元 . Available from:
    http://www.genetinfo.com/international-news/item/35180.html.
    2. M. K. Ravi, HOD &Dean Orthopedic appliance. Department of Orthodontics, Bharathi
    Salai, Ramapuram, Chennai, SRM Dental College.
    3. Chang, H. C., Chang, C. H., Li, H. Y., and Wang, C. H., Biomechanical analysis of the
    press-fit effect in a conical Morse taper implant system by using an in vitro experimental
    test and finite element analysis. Journal of Prosthetic Dentistry, 2022. 127(4): pp. 601-608.
    4. Crismani, A. G., Bertl, M. H., Celar, A. G., Bantleon, H. P., and Burstone, C. J., Miniscrews
    in orthodontic treatment: review and analysis of published clinical trials. American Journal
    of Orthodontics and Dentofacial Orthopedics, 2010. 137(1): pp. 108-113.
    5. Bishop, N. E., Hohn, J. C., Rothstock, S., Damm, N. B., and Morlock, M. M., The
    influence of bone damage on press-fit mechanics. Journal of Biomechanics, 2014. 47(6): pp. 1472-1478.
    6. Huiskes, R., The various stress patterns of press-fit, ingrown, and cemented femoral stems.
    Clinical Orthopaedics and Related Research, 1990(261): pp. 27-38.
    7. Adolfo Patiño, G., [The surgeon-dentist Pierre Fauchard]. Revista de la Federacion
    Odontologica Colombiana, 1985. 34(151): pp. 117-123.
    8. Peck, S., The contributions of Edward H. Angle to dental public health. Community Dental
    Health, 2009. 26(3): pp. 130-131.
    9. Hennis, I., [The historical development of the orthodontic apparatus up to the beginning
    of the 20th century]. Zahnarztl Prax, 1965. 16(16): pp. 191-193.
    10. Park, J.-B., Kim, E.-Y., Paek, J., Kook, Y.-A., Jeong, D.-M., Cho, I.-S., and Nelson, G.,
    Primary Stability of Self-Drilling and Self-Tapping Mini-Implant in Tibia of DiabetesInduced Rabbits, in International Journal of Dentistry, S.-H. Kim, Editor. 2014, Hindawi
    Publishing Corporation. pp. 429359.
    11. TD, C., Eklund MK: The possibibity of skeletal anchorage. J Chin Orthod, 1983. 17: pp.
    266-269.
    12. Kanomi, R., Hidaka, O., Yamada, C., and Takada, K., Asymmetry in the condylar long axis
    and first molar rotation. Journal of dental research, 2004. 83(2): pp. 109-114.
    13. Lin, J. and Liou, E., A new bone screw for orthodontic anchorage. Journal of clinical
    orthodontics: JCO, 2003. 37(12): pp. 676-681.
    14. Herman, R. and Cope, J. B. Miniscrew implants: IMTEC mini ortho implants. in Seminars
    in Orthodontics. 2005. Elsevier.
    15. Miyawaki, S., Koyama, I., Inoue, M., Mishima, K., Sugahara, T., and Takano-Yamamoto,
    T., Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American journal of orthodontics and dentofacial orthopedics, 2003. 124(4): pp. 373-378.
    16. abutments4life 網站. Available from: https://abutments4life.de/en/isq-3/.
    17. Shah, A. H., Behrents, R. G., Kim, K. B., Kyung, H.-M., and Buschang, P. H., Effects of screw and host factors on insertion torque and pullout strength. The Angle Orthodontistontist, 2011. 82(4): pp. 603-610.
    18. Marquezan, M., Lau, T. C. L., Mattos, C. T., da Cunha, A. C., Nojima, L. I., Sant'Anna, E.
    F., de Souza, M. M. G., and de Souza Araújo, M. T., Bone mineral density: Methods of measurement and its influence on primary stability of miniscrews. The Angle Orthodontistontist, 2011. 82(1): pp. 62-66.
    19. Son, S., Motoyoshi, M., Uchida, Y., and Shimizu, N., Comparative study of the primary
    stability of self-drilling and self-tapping orthodontic miniscrews. American Journal of Orthodontics and Dentofacial Orthopedics, 2014. 145(4): pp. 480-485.
    20. Cho, Y. M., Cha, J. Y., and Hwang, C. J., The effect of rotation moment on the stability of
    immediately loaded orthodontic miniscrews: a pilot study. European Journal of
    Orthodontics, 2010. 32(6): pp. 614-619.
    21. Motoyoshi, M., Hirabayashi, M., Uemura, M., and Shimizu, N., Recommended placement
    torque when tightening an orthodontic mini-implant. Clinical oral implants research, 2006. 17: pp. 109-114.
    22. Shultz, T. R., Blaha, J. D., Gruen, T. A., and Norman, T. L., Cortical bone viscoelasticity and fixation strength of press-fit femoral stems: finite element model. Journal of
    Biomechanical Engineering, 2006. 128(1): pp. 7-12.
    23. Kuroda, S., Inoue, M., Kyung, H. M., Koolstra, J. H., and Tanaka, E., Stress Distribution in Obliquely Inserted Orthodontic Miniscrews Evaluated by Three-Dimensional FiniteElement Analysis. The International Journal of Oral & Maxillofacial Implants, 2017. 32(2): pp. 344-349.
    24. Ovesy, M., Indermaur, M., and Zysset, P., Prediction of insertion torque and stiffness of a dental implant in bovine trabecular bone using explicit micro-finite element analysis.Journal of the Mechanical Behavior of Biomedical Materials, 2019. 98.
    25. Liu, T.-C., Chang, C.-H., Wong, T.-Y., and Liu, J.-K., Finite element analysis of miniscrew
    implants used for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 141(4): pp. 468-476.
    26. MacLeod, A. R., Pankaj, P., and Simpson, A. H., Does screw-bone interface modelling
    matter in finite element analyses? Journal of Biomechanics, 2012. 45(9): pp. 1712-1716.
    27. 師大 有限元素分析法介紹. Available
    from:http://rportal.lib.ntnu.edu.tw:8080/server/api/core/bitstreams/5ed207a2-f117-44a8-
    9438-16c9e0ba8a18/content.
    28. Ansys Contact Types and Explanations. Available
    from:https://www.mechead.com/contact-types-and-behaviours-in-ansys/.
    29. Ebacher, V., Tang, C., McKay, H., Oxland, T. R., Guy, P., and Wang, R., Strain redistribution and cracking behavior of human bone during bending. Bone, 2007. 40(5):
    pp. 1265-1275.
    30. Singh, S., Mogra, S., Shetty, V., Shetty, S., and Philip, P., Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: A conical, self-drilling miniscrew implant system. American journal of orthodontics and dentofacial
    orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2012. 141: pp. 327-336.
    31. Shyagali, T. R. and Aghera, D., Evaluation of stress generation on the cortical bone and the palatal micro-implant complex during the implant-supported en masse retraction in lingual orthodontic technique using the FEM: Original research. Journal of dental research, dental clinics, dental prospects, 2019. 13(3): pp. 192-199.
    32. Motoyoshi, M., Yano, S., Tsuruoka, T., and Shimizu, N., Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clinical Oral Implants Research, 2005. 16(4): pp. 480-485.
    33. Planell, J. A., Best, S., Lacroix, D., and Merolli, A., Bone Reportsair biomaterials. 2009.
    1-477.
    34. Donoghue, R., Peters, P., and Marci, G., The influence of mechanical conditioning on the viscoelastic behaviour of short-fibre glass reinforced epoxy resin (GRP). Composites
    Science and Technology, 1992. 44(1): pp. 43-55.
    35. Song, Y. Y., Cha, J. Y., and Hwang, C. J., Mechanical characteristics of various orthodontic mini-screws in relation to artificial cortical bone thickness. Angle Orthodontist, 2007. 77(6): pp. 979-985.
    36. Yoo, S. H., Park, Y. C., Hwang, C. J., Kim, J. Y., Choi, E. H., and Cha, J. Y., A comparison of tapered and cylindrical miniscrew stability. European Journal of Orthodontics, 2014. 36(5): pp. 557-562.
    37. Yu, J. H., Lin, Y. S., and Lin, C. L., A Revolving Temporary Anchorage Cap Connecting
    to an Orthodontic Miniscrew Using In Vitro Experimental Testing: Safety and Biomechanical Evaluations. Implant Dentistry, 2015. 24(6): pp. 693-698.
    38. Heidemann, W., Gerlach, K. L., Gröbel, K. H., and Köllner, H. G., Influence of different
    pilot hole sizes on torque measurements and pullout analysis of osteosynthesis screws. Journal of Cranio-Maxillofacial Surgery, 1998. 26(1): pp. 50-55.
    39. Park, H. S., Jeong, S. H., and Kwon, O. W., Factors affecting the clinical success of screw
    implants used as orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics, 2006. 130(1): pp. 18-25.
    40. Tseng, Y. C., Hsieh, C. H., Chen, C. H., Shen, Y. S., Huang, I. Y., and Chen, C. M., The application of mini-implants for orthodontic anchorage. International Journal of Oral and Maxillofacial Surgery, 2006. 35(8): pp. 704-707.
    41. Motoyoshi, M., Clinical indices for orthodontic mini-implants. Journal of Oral Science, 2011. 53(4): pp. 407-412.
    42. Sung, S. J., Jang, G. W., Chun, Y. S., and Moon, Y. S., Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 2010. 137(5): pp. 648-657.
    43. Cha, J.-Y., Takano-Yamamoto, T., and Hwang, C.-J., The effect of miniscrew taper morphology on insertion and removal torque in dogs. International Journal of Oral &
    Maxillofacial Implants, 2010. 25(4).
    44. Rossi, M., Bruno, G., De Stefani, A., Perri, A., and Gracco, A., Quantitative CBCT
    evaluation of maxillary and mandibular cortical bone thickness and density variability for orthodontic miniplate placement. International Orthodontics, 2017. 15(4): pp. 610-624.
    45. 陳式萱, 矯正用迷你骨釘植入後之生物體反應. 2007. 碩士論文. 國立台灣大學. 臨床牙醫學研究所
    46. Kim, G. T., Jin, J., Mangal, U., Lee, K. J., Kim, K. M., Choi, S. H., and Kwon, J. S., Primary Stability of Orthodontic Titanium Miniscrews due to Cortical Bone Density and Re-Insertion. Materials (Basel), 2020. 13(19).
    47. Han, C.-M., Watanabe, K., Tsatalis, A. E., Lee, D., Zheng, F., Kyung, H.-M., Deguchi, T., and Kim, D.-G., Evaluations of miniscrew type-dependent mechanical stability. Clinical Biomechanics, 2019. 69: pp. 21-27.
    48. Beer, A., Gahleitner, A., Holm, A., Tschabitscher, M., and Homolka, P., Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible.
    Clinical Oral Implants Research, 2003. 14(5): pp. 616-620.
    49. Wang, R., Eppell, S. J., Nguyen, C., and Morris, N., Relative Contribution of Trabecular and Cortical Bone to Primary Implant Stability: An In Vitro Model Study. Journal of Oral Implantology, 2016. 42(2): pp. 145-152.
    50. Subramanian, K. and Morse, E. P. Assembly analysis of interference fits in elastic materials. in International Precision Assembly Seminar. 2010. Springer.
    51. Frisardi, G., Barone, S., Razionale, A. V., Paoli, A., Frisardi, F., Tullio, A., Lumbau, A., and Chessa, G., Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis. Head and Face Medicine, 2012. 8: pp. 18.
    52. Das, N., The new bone drilling concept: Osseodensification (Hydrodynamic Bone Preparation). EC Dental Science, 2019. 18: pp. 2345-2355.
    53. Bishop, N. E., Höhn, J.-C., Rothstock, S., Damm, N. B., and Morlock, M. M., The influence of bone damage on press-fit mechanics. Journal of Biomechanics, 2014. 47(6):
    pp. 1472-1478.
    54. Kim, K.-D., Yu, W.-J., Park, H.-S., Kyung, H.-M., and Kwon, O.-W., Optimization of orthodontic microimplant thread design. The Korean Journal of Orthodontics, 2011. 41(1).
    55. Lakshmikantha, H. T., Ravichandran, N. K., Jeon, M., Kim, J., and Park, H. S., 3-Dimensional characterization of cortical bone microdamage following placement of orthodontic microimplants using Optical Coherence Tomography. Scientific Reports, 2019. 9(1): pp. 3242.
    56. Adelina, P., Dehelean, C., Calniceanu, H., Watz, C., Brad, S., Sinescu, C., Marcu, O., Casiana, S., Popa, Avram Feflea, S., Nicolov, M., and Szuhanek, C., A Custom-Made
    Orthodontic Mini-Implant-Effect of Insertion Angle and Cortical Bone Thickness on Stress Distribution with a Complex In Vitro and In Vivo Biosafety Profile. Materials, 2020. 13: pp. 4789.
    57. Nam, O., Yu, W., and Kyung, H.-M., Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis. Korean Journal of Orthodontics - KOREAN J ORTHOD, 2008. 38.
    58. Seeram Ramakrishna, M. R., T .S. Sampath Kumar, Winston O. Soboyejo, Biomaterials: A Nano Approach. 2010: CRC Press. 274.
    59. Sawbones, Biomechanical catalog, Sawbones, Editor. 2020.
    60. Duaibis, R., Kusnoto, B., Natarajan, R., Zhao, L., and Evans, C., Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study. Angle Orthodontist, 2012. 82(5): pp. 875-880.
    61. Cunha, A. C. d., Marquezan, M., Lima, I., Lopes, R. T., Issamu Nojima, L., and Franzotti Sant'Anna, E., Influence of bone architecture on the primary stability of different miniimplant designs. American Journal of Orthodontics and Dentofacial Orthopedics, 2015. 147(1): pp. 45-51.
    62. Frost, H. M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthodontist, 1994. 64(3): pp. 175-188.
    63. Kold, S., Bechtold, J. E., Ding, M., Chareancholvanich, K., Rahbek, O., and Soballe, K., Compacted cancellous bone has a spring-back effect. Acta Orthopaedica Scandinavica,
    2003. 74(5): pp. 591-595.
    64. Štefan, J., Parma, S., Marek, R., Plešek, J., Ciocanel, C., and Feigenbaum, H., Overview of an Experimental Program for Development of Yield Surfaces Tracing Method. Applied
    Sciences, 2021. 11(16).
    65. 王仁, 《塑性力學引論》. 2006: 北京大學出版社.
    66. Sana, S. and Manjunath, G., Mini-implant materials: An overview. IOSR J Dental Science and Medical Science, 2013. 7: pp. 15-20.
    67. Pattin, C. A., Caler, W. E., and Carter, D. R., Cyclic mechanical property degradation during fatigue loading of cortical bone. Journal of Biomechanics, 1996. 29(1): pp. 69-79.
    68. Brock, G. R., Chen, J. T., Ingraffea, A. R., MacLeay, J., Pluhar, G. E., Boskey, A. L., and van der Meulen, M. C. H., The effect of osteoporosis treatments on fatigue properties of cortical bone tissue. Bone Reportsorts, 2015. 2: pp. 8-13.
    69. Kemper, A. R., McNally, C., Kennedy, E. A., Manoogian, S. J., Rath, A. L., Ng, T. P., Stitzel, J. D., Smith, E. P., Duma, S. M., and Matsuoka, F., Material properties of human
    rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J, 2005. 49: pp. 199-230.
    70. Wolfram, U. and Schwiedrzik, J., Post-yield and failure properties of cortical bone. BoneKEy reports, 2016. 5: pp. 829-829.
    71. Kotha, S. P. and Guzelsu, N., Tensile behavior of cortical bone: Dependence of organic matrix material properties on bone mineral content. Journal of Biomechanics, 2007. 40(1): pp. 36-45.
    72. Inceoglu, S., Akbay, A., and McLain, R. F., Stress relaxation at the bone-pedicle screw interface in human bone. Spine (Phila Pa 1976), 2006. 31(12): pp. 1321-1326.
    73. Zivkovic, I., Gonzalez, M., and Amirouche, F., The effect of under-reaming on the cup/bone interface of a press fit hip replacement. Journal of Biomechanical Engineering,
    2010. 132(4): pp. 041008.
    74. Yamashita-Mikami, E., Tanaka, M., Sakurai, N., Arai, Y., Matsuo, A., Ohshima, H., Nomura, S., and Ejiri, S., Correlations between alveolar bone microstructure and bone
    turnover markers in pre- and post-menopausal women. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013. 115(4): pp. e12-19.

    QR CODE
    :::