| 研究生: |
黃凡修 Fan-Hsiu Huang |
|---|---|
| 論文名稱: |
利用高階除數操作之注入式鎖態振盪器於微波/毫米波訊號源應用 Injection-Locked Oscillators with High-Order-Division Operation for Microwave/Millimeter-wave Signal Generation |
| 指導教授: |
詹益仁
Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 注入式鎖態 、微波/毫米波振盪器 、鎖相迴路 |
| 外文關鍵詞: | injection-locked, microwave/millimeter-wave oscillator, phase-locked loop |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微波/毫米波通訊系統近年來已廣泛的使用在行動通訊、光纖通訊及區域網路相關的應用上,為了系統中能擁有穩定低相位雜訊且低成本之信號源,注入式鎖態振盪器漸漸地被實際使用。在本論文中,我們探討注入式鎖態振盪器的基本原理,透過相關的注入式鎖態模型運用與推導來了解其鎖態機制、鎖態範圍、高階注入操作及相位雜訊等特性,利用這些原理來設計製作適合於微波或毫米波操作之高階注入鎖態振盪器。
使用基諧波、次諧波及高諧波注入方式,在本論文透過CMOS 及 GaAs pHEMT製程與高頻電晶體模型的模擬,設計出相關電路用以產生60 GHz振盪源與100 GHz除頻器,並實作出寬鎖態範圍、低相位雜訊及低功率耗損特性的注入式鎖態振盪器。此外,我們亦利用高階注入除數為4的除頻器來實作一30 GHz類比式鎖相迴路;在已知的基本迴路元件量測特性下,設計出整合式鎖相迴路積體電路,並實測出擁有低功率損耗及低相位雜訊等優良特性,以驗證注入式鎖態除頻器可應用於實際的鎖相迴路或頻率合成器。
In order to obtain a reference signal with a low phase noise, high frequency stability, and low cost for the microwave/millimeter-wave applications, the injection-locked oscillators have been widely used in the wireless, optics, and local network systems. In this thesis, the theory of injection locking is introduced to investigate the mechanism about the characteristics of the locking range, high-order harmonic injection, and the phase noise in injection-locked oscillator. With the injection-locked models, the behavior of injection locking is therefore understood for injection-locked oscillator designs.
Based on the methods of fundamental, sub-, and super-harmonic injections, the relative millimeter-wave injection locking circuits have been achieved and fabricated by using CMOS and GaAs pHEMT techniques. The 60 GHz injection-locked oscillators and the 100 GHz injection-locked frequency divider are fulfilled with the good performances of low phase noise, wide locking range, and low power consumption through the simulations with the high-frequency transistor model. In addition, a 30 GHz analogy phase-locked loop using a divided-by 4 ring-type injection-locked frequency divider has also been designed and achieved by using 0.5 μm E/D mode GaAs pHEMT. Utilizing the known experiment results from the each function circuits such as the voltage-controlled oscillator, phase detector, dc amplifier within a loop filter, the 30 GHz PLL was successfully integrated to be a MMIC for Ka-band communication systems. This circuit proves that the injection-locked frequency divider can embedded in the PLL chip with a fine characteristic.
[1]H. R. Rategh and T. H. Lee, “Superharmonic Injection-Locked Frequency Dividers, IEEE J. Solid-State Circuits, vol. 34, no. 6, pp.813-821, Jun. 1999.
[2]S. Kudszus, T. Berceli, A. Tessmann, M. Neumann, and W. H. Haydl, “W-band HEMT Oscillator MMICs using Subharmonic Injection Locking”, IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 12, pp.2526-2532, Dec. 2000.
[3]J. F. Buckwalter, A. Babakhani, A. Komijani, and A. Hajimiri, “An Integrated Subharmonic Coupled-Oscillator Scheme for a 60-GHz Phased-Array Transmitter”, IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 12, pp.4271-4280, Dec. 2006.
[4]R. Adler, “A study of Locking Phenomena in Oscillators”, Proceedings of the IEEE, vol. 61, no. 10, pp.1380-1385, Oct. 1973.
[5]V. Uzunoglu and M. H. White, “The Synchronous Oscillator: A Synchronization and Tracking Network”, IEEE J. Solid-State Circuits, vol. sc-20, no. 6, pp.1214-1226, Dec. 1985.
[6]K. Kamogawa, T. Tokumitsu, and M. Ailawa, “Injection-Locked Oscillator Chain: A Possible Solution to Millimeter-Wave MMIC Synthesizers”, IEEE Trans. on Microwave Theory and Techniques, vol. 45, no. 9, pp.1578-1584, Sep. 1997.
[7]D. J. Sturzebecher, X. Zhou, X. S. Zhang, and A. S. Daryoush, “Optically Controlled Oscillators for Millimeter-Wave Phased Array Antennas”, IEEE Trans. on Microwave Theory and Techniques, vol. 41, no. 6/7, pp.998-1004, Jun./Jul.. 1993.
[8]A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and Design of Injection-Locked LC Divider for Quadrature Generation”, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1425-1433, Sep. 2004.
[9]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection-Locking Scheme for Precision Quadrature Generation”, IEEE J. Solid-State Circuits, vol. 37, no. 7, pp.845-851, Jul. 2002.
[10]Sander L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A Low-Phase-Noise 5 GHz CMOS Quadrature VCO using Superharmonic Coupling”, IEEE J. Solid State Circuits, vol. 38, no. 7, pp. 1148-1154, Jul. 2003.
[11]A. C. Bordonalli, C. Walton, and A. J. Seeds, “High Performance Phase Locking of Wide Linewidth Semiconductor Lasers by Combined Use of Optical Injection Locking and Optical Phase-Lock Loop”, IEEE J. Lightwave Technology, vol. 17, no. 2, Feb. 1999.
[12]Y. Tajima, “GaAs FET Applications for Injection-Locked Oscillator and Self-Oscillating Mixers”, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-27, no. 7, pp.629-632, Dec. 1979.
[13]Y. Chen and Z. Chen, “A Dual-Gate FET Subharmonic Injection-Locked Self-Oscillating Active Integrated Antenna for RF Transmission”, IEEE Microwave and Wireless Components Letters, vol. 13, no. 6, pp.199-201, Jun. 2003.
[14]H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct Optical Injection Locking of InP/InGaAs HPT Oscillator ICs for Microwave Photonics and 40 Gb/s-Class Optoelectronic Clock Recovery”, IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 12, pp.3002-3008, Dec. 2002.
[15]K. Kurokawa, “Injection locking of microwave solid-state oscillators”, Proc. IEEE, vol. 61, pp.1336-1410, Oct. 1973.
[16]L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, pp.1723–1727, Nov. 1965.
[17]H. L. Stover, “Theoretical explanation of the output spectra of unlocked driven oscillators,” Proc. IEEE, vol. 54, pp. 310–311, Feb. 1966.
[18]M. Armand, “On the output spectrum of unlocked driven oscillators,” Proc. IEEE, vol. 59, pp. 798–799, May 1969.
[19]M. Tiebout, “A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Lo-Power Frequency Divider”, IEEE J. Solid-State Circuits, vol. 39, no. 7, pp.1170-1174, Jul. 2004.
[20]B. Razavi, “A Study of Injeciton Locking and Pulling in Oscillators”, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, Sep. 2004.
[21]B. Mesgarzadeh, A. Alvandpour, “First-Harmonic Injection-Locked Ring Oscillaotrs”, IEEE 2006 Custom Integrated Circuits Conference, pp.733-736, 2006.
[22]J. Jeong, and Y. Kwon, “Injeciton-Locked Push-Push Oscillator at 72 GHz Band using Cross-Coupled HEMTs”, European Microwave Conference, pp. 587-590, 2003.
[23]A. S. Daryoush, T. Berceli, R. Saedi, P. R. Herczfeld, and A. Rosen, “Theory of Subharmonic Synchronization of Nonlinear Oscillator”, IEEE MTT-S Digest, pp.735-738, 1989.
[24]X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A Study of Subharmonic Injection Locking for Local Oscillator”, IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp.97-99, Mar. 1992.
[25]X. Zhang, X. Zhou, and S. Daryoush, “A Theoretical and Experimental Study of the Noise Behavior of Subharmonically Injection Locked Local Oscillators”, IEEE Trans. on Microwave Theory and Techniques, vol. 40, no. 5, pp.895-902, May. 1992.
[26]J. Y. Lee and U. S. Hong, “Push-push Subharmonically Injection-Locked Oscillator”, Electronics Letters, vol. 32, no.19, pp.1792-1793, 1996.
[27]H. Ahmed, C. DeVries, and R. Mason, “A Digitally Tuned 1.1 GHz Subharmonic Injection-Locked VCO in 0.18 um CMOS”, European Solid-State Circuits Conference, pp.81-84, 2003.
[28]E. Suematsu, M. Yagura, A. Yamada, K. Kishimoto, Y. Zhu, J. K. Twynam, K. Sakuno, T. Hasegawa, M. Hasegawa, H. Sato, “Millimeter-wave HBT MMIC Synthesizers using Subharmonically Injection-Locked Oscillators”, Gallium Arsenide Integrated Circuit Symposium, pp.271-274, 1997.
[29]S. H. Lee, S. L. Jang, Y. H. Chuang, J. J. Chao, J. F. Lee, and M. H. Juang, “A Low Power Injection Locked LC-Tank Oscillator With Current Reused Topology”, IEEE Microwave and Wireless Components Letters, vol. 17 no. 3, pp.220-222, Mar. 2007.
[30]S. Desgrez, M. Gayral, O. Llopis, J. C. Cayrou, J. L. Cazauz, and J. F. Sautereau, “Wide-Bandwidth Ku-band Monolithic Analog Frequency Divider”, IEEE Microwave and Guided Wave Letters, vol. 8, no. 2, pp.84-86, Feb. 1998.
[31]P. Nuchter and W. Menzel, “A Novel Frequency Divider Configuration for Micro- and Millimeter-Wave Signals”, IEEE Microwave and Guided Wave Letters, vol. 6, no. 7, pp.265-267, Jul. 1996.
[32]S. Kudszus, W. H. Haydl, M. Neumannn, and M. Schlechtweg, “94/47 GHz Regenerative Frequency Divider MMIC with Low Conversion Loss”, IEEE J. Solid-State Circuits, vol. 35, no. 9, pp.1312-1316, Sep. 2000.
[33]A. Bonfanti, A. Tedesco, C. Samori, and A. L. Lacaita, “A 15 GHz Broad-Band ÷2 Frequency Divider in 0.13um CMOS for Quadrature Generation”, IEEE Microwave and Wireless Components Letters, vol. 15 no. 11, pp.724-726, Nov. 2005.
[34]K. Yamamoto, and M. Fujishima, “A 44-