| 研究生: |
洪浚傑 Chun-Chieh Hung |
|---|---|
| 論文名稱: |
離岸風力機負載分析與結構應力分析 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | GH-Bladed 、失速延遲 、風力負載 、極限負載 、塔架應力分析 |
| 外文關鍵詞: | GH-Bladed, Stall Delay, Wind-induced Load, Ultimate Load, Tower Stress Analysis |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究共分為兩個部分,第一部分探討NREL Phase VI風力機所受之風力負載,透過實驗資料與模擬值之比較,發現因為葉片旋轉效應的影響,若僅使用二維翼型氣動力參數進行模擬,其值與實驗值差異甚大,本研究使用Snel與Lindenburg兩種不同的三維失速延遲修正模型,將旋轉效應造成的影響考慮進去,結果顯示經過修正後的模擬值與實驗值之差距降低,接著探討在不同的節距角與轉速之下,對風力機負載所造成之影響,結果顯示節距角與轉速提高,會使低轉速軸扭矩值提高,其主因為攻角遠離了失速範圍。
第二部份針對NREL 5MW OWT風力機塔架進行應力分析,選擇IEC 61400-3中屬於需分析極限負載的六種設計工況,並配合台灣西部沿岸之海洋參數進行模擬,最後將轉換後的負載輸入至ANSYS Workbench,結果顯示在DLC 1.6b、6.3b的狀況下,塔架之安全係數已低於IEC 61400-3規範建議值,這表示NREL 5MW OWT之原始設計可能不適用於台灣西部沿岸之極端風況與海況,因此本研究繼續探討將原塔架模型作修改,使安全係數高於規範建議值。
This study consists of two parts. In part one, we investigated the wind-induced loads on the NREL Phase VI wind turbine. We noticed that if the inputs of simulations were the 2D airfoil aerodynamics coefficients only, the results will be apparently different from the experimental results due to rotating effect of blades. So, we used two different 3D stall delay correction models, which were derived by Snel and Lindenburg, to account for the rotating effect of blades. After modification of aerodynamics coefficients, the results showed well agreement between experiment and simulation. Furthermore, we discussed the wind-induced loads under different pitch angles or rotor speeds. The results showed that raising pitch angle or rotor speed increased the Low Speed Shaft Torque due to A.O.A was far from stall range.
In part two, the stresses of NREL 5MW OWT tower were investigated. We studied six design load cases (DLCs) which should be processed ultimate load analysis according to the IEC 61400-3 standard. The ocean parameters of Taiwan west coast were adopted as the inputs of DLCs. The output loads of GH-Bladed software were transformed and imported to ANSYS Workbench. The results showed that the safety factors of tower under DLC 1.6b and 6.3b was lower than those recommended in IEC 61400-3. It indicated that the original design of NREL 5MW OWT may not afford the extreme wind and ocean conditions at Taiwan west coast. Therefore, we modified the thickness of tower to make the safety factor of tower higher than the suggestion.
[1] “風力發電 4年推動計畫 ” 經濟部能源局 2017。
[2] “Global Wind Speed Rankings,” 4C Offshore, 2013.
[3] 呂學德 、 何無忌 、 呂威賢 、 胡哲魁 、 陳美蘭 、 連永順 “台灣離岸風力潛
能與優 選離岸區塊場址研究 ” 中華民國第三十六屆電力工程研討會
2015。
[4] “Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines,” IEC 61400-3, International Electrotechnical Commission, 2009.
[5] 網路資料 :風力發電單一服務窗口。取自 https://www.twtpo.org.tw/
[6] 網路資料 :維基百科。取自
https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0
[7] 網路資料 : Wind Energy Gets Serial。取自 https://www.theengineer.co.uk/wind-energy-gets-serial/
[8] J.M. Jonkman, “Modeling of the UAE Wind Turbine for Refinement of FAST_AD,” National Renewable Energy Laboratory, 2003.
[9] C. Lindenburg, “Investigation Into Rotor Blade Aerodynamics Analysis of the Stationary Measurements on the UAE Phase-VI Rotor in the NASA-Ames Wind Tunnel,” ECN-C-03-025, 2003.
[10] C. Bak, J. Johansen, and P.B. Andersen, “Three-Dimensional Corrections of Airfoil Characteristics Based on Pressure Distributions.” Risø National Laboratory, 2006.
[11] 王晟桓 、 陳世雄 “基於葉素動量理論之水平軸風力發電機葉片空氣動力
分析程序 ” 2010臺灣風能學術研討會 G6_09 2010。
96
[12] 蔡育哲蔡育哲,, “離岸風力機支撐結構行為離岸風力機支撐結構行為” ,,國立成功大學土木工程研究所國立成功大學土木工程研究所,,碩士論文,碩士論文,2016。。
[13] B.S. Kim, J.W. Jin, O. Bitkina, and K.W. Kang, “Ultimate Load Characteristics of NREL 5-MW Offshore Wind Turbines with Different Substructures,” International Journal of Energy Research, 2015.
[14] T. Gentils, L. Wang, and A. Kolios, “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm,” Applied Energy 199, 187-204, 2017.
[15] 林宗岳林宗岳、、吳凱洋吳凱洋,, “探討海氣象觀測塔於颱風環境下極限及暫態負荷對結探討海氣象觀測塔於颱風環境下極限及暫態負荷對結構反應之影響構反應之影響” ,,2015 臺臺灣風能學術研討會暨灣風能學術研討會暨 NEP-II 離岸風力及海洋能離岸風力及海洋能源主軸中心成果發表會源主軸中心成果發表會,,OW_04,,2015。。
[16] 謝昆儒謝昆儒、、曾瑞堂曾瑞堂、、張永源張永源,, “風力機之塔架負載分析風力機之塔架負載分析” ,,2010臺灣風能學臺灣風能學術研討會,術研討會,G6_02,,2010。。
[17] 詹益梁詹益梁,, “風力發電塔架結構設計之探討風力發電塔架結構設計之探討” ,,大漢技術學院土木工程與環大漢技術學院土木工程與環境資源管理系,碩士論文,境資源管理系,碩士論文,2014。。
[18] 鄭榮和鄭榮和、、沈丞佑沈丞佑、、林家緯林家緯、、李盈宏李盈宏、、鍾秋峰鍾秋峰、、陳瑞麒陳瑞麒、、唐文元唐文元,, “ABAQUS於風力機結構安全評估之應用於風力機結構安全評估之應用” ,,國立臺灣大學機械工程學國立臺灣大學機械工程學系,系,2012。。
[19] 章子華章子華、、周易周易、、諸葛萍諸葛萍,, “颱風作用下大型風電結構破壞模式研究颱風作用下大型風電結構破壞模式研究” ,,寧寧波大學建築工程與環境學院,波大學建築工程與環境學院,2014 。。
[20] 郭家齊郭家齊、、蔡國忠蔡國忠、、方治國方治國,, “大型風機於極端氣候下之流固耦合分析大型風機於極端氣候下之流固耦合分析” ,,2015臺灣風能學術研討會臺灣風能學術研討會暨暨 NEP-II 離岸風力及海洋能源主軸中心成果發離岸風力及海洋能源主軸中心成果發表會表會,,OW_02,,2015。。
[21] X.F. Liu, L. Bo, and H.L. Luo, “Dynamical Measurement System for Wind Turbine Fatigue Load,” Renewable Energy 89, 909-921, 2016.
97
[22] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed Theory Manual Version 4.8,” 2016.
[23] “Wind Turbines - Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2014.
[24] Y.K. Chen, and J.L. Chen, “Changhua Coastal Wind Farm Assessment by IEC61400,” Taiwan Power Research Institute, 2015.
[25] 網路資料網路資料: Particle Motion in Deep Water。取自。取自https://www.scubageek.com/articles/wwwparticle.html
[26] 唐榕崧唐榕崧,, “複合材料葉片振動行為之研究複合材料葉片振動行為之研究” ,,國立交通大學工學院專班精國立交通大學工學院專班精密與自動化工程學程,碩士論文,密與自動化工程學程,碩士論文,2009。。
[27] DNV GL, “Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
[28] M.M. Hand, D.A. Simms, L.J. Fingersh, D.W. Jager, J.R. Cotrell, S. Schreck, and S.M. Larwood, “Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns,” National Renewable Energy Laboratory, 2001.
[29] 崔海平崔海平,, “離岸風電場址風況離岸風電場址風況、、海洋參數及負載分析技術研究海洋參數及負載分析技術研究” ,,金屬工金屬工業研究發展中心業研究發展中心研究報告研究報告,,2018。。
[30] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Laboratory, 2009.
[31] J. Jonkman and W. Musial, “Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment,” National Renewable Energy Laboratory, 2010.
[32] U.F. Gamiz, E. Zulueta, A. Boyano, J.A.R. Hernanz, and J.M.L Guede, “Microtab Design and Implementation on a 5MW Wind Turbine,” Applied
98
Sciences 7, 536-553, 2017.
[33] S. Aasen, A.M. Page, K.S. Skau, and T.A Nygaard, “Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine,” Wind Energy Science Discussions, 2016.
[34] 網路資料網路資料:元智大學最佳化設計實驗室。取自元智大學最佳化設計實驗室。取自http://designer.mech.yzu.edu.tw/article/articles/course/file/(2004-03-26)%20%B2%C4%A4E%B3%B9%A1@%A6%B3%AD%AD%A4%B8%AF%C0%A4%C0%AAR.pdf
[35] M. Miller, “The Multi-Objective Design of Flatback Wind Turbine Airfoils,” Master Thesis, Carleton University, 2016.
[36] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed User Manual Version 4.8,” 2016.
[37] H. Himmelskamp, “Profile Investigations on a Rotating Airscrew,” PhD Thesis, Gottingen University, 1945.
[38] Z. Du and M.S. Selig, “A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction,” Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana and Champaign, 1997.
[39] P.K. Chaviaropoilos and M.O.L. Hansen, “Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3D Navier-Stokes Solver,” Journals of Fluids Engineering 122, 330-336, 2000.
[40] H. Snel, R. Houwink, and J. Bosschers, “Sectional Prediction of Lift Coefficients on Rotating Wind Turbine Blades in Stall,” ECN-C--93-052, 1994.
[41] 劉瑞弘劉瑞弘,, “風力機結構負載與共振模態之分析風力機結構負載與共振模態之分析” ,,工業技術研究院工業技術研究院,,2009。。
[42] N. Anand, H.M. Hartvig, and S.F. Wang, “Design Load Basis for Offshore Wind
99
Turbines,” DTU Wind Energy Report No. E-0133, 2016.
[43] DNV GL, “Support Structures for Wind Turbines,” DNVGL-ST-0126, 2016.