| 研究生: |
馬何莫 Amir Machmud |
|---|---|
| 論文名稱: |
乙醇及硫酸鹽改質鋯、鈰氧化鋁基觸媒以提升 C4F8 之催化活性 Enhancement of Catalytic Activity of Al2O3 for C4F8 Conversion via Modification with Zr, Ce, Ethanol, and Sulfate |
| 指導教授: |
張木彬
Chang Moo Been |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氧化鋁基觸媒 、活化能 、全氟化合物 |
| 外文關鍵詞: | alumina-based catalysts, activation energy, C4F8 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
評估經鈰、鋯、硫酸鹽和乙醇改質的氧化鋁基觸媒在 ≤ 650oC 溫度下催化水解 C4F8 的效果。通過酸改質提升觸媒的表面積,並進一步研究稀土元素、酸量和表面積之間的相互作用。此後,進行穩定性測試以評估 ASE (乙醇及硫酸鹽改質 Al2O3 觸媒)、ACSE (乙醇及鈰改質Al2O3 觸媒) 和 AZSE (乙醇及鋯改質 Al2O3 觸媒) 對 C4F8 的轉化性能。穩定性測試結果表明,C4F8在650oC反應24h時的轉化性能ACSE>AZSE>ASE,同時,評估水氣和氧含量的耦合效應。總體而言,ACSE 觸媒在 650oC表現出良好的活性,在沒有水氣的情況下, 650oC 時催化熱解的最高轉化率為 9.56%,而在 550oC 和 38% H2O(g) 的條件下,催化水解的最高轉化率為 100%。此外,在 650oC 和 21% 的氧氣條件下,催化氧化的最高轉化率為 95%,而催化水解和氧化的耦合在 450oC 下實現了 91% 的 C4F8 轉化率。ACSE觸媒對C4F8之催化水解、熱解和氧化的活化能分別為67.2、60.1和79.9 kJ/mol。 C4F8 轉化後的主要產物包括 CO2、CO 和 COF2,同時也產生少量 的CHF3、C2F4、C3F6O。本研究證實以鈰、硫酸鹽和乙醇對觸媒進行改質,可有效提高氧化鋁基觸媒轉化C4F8的活性和穩定性。
The effectiveness of alumina-based catalysts modified by cerium, zirconium, sulfate, and ethanol in the catalytic hydrolysis of C4F8 at temperatures ≤ 650oC is evaluated. Modification of catalysts enhances the acid amount and surface area. The interplay among rare earth elements, acid amount, and surface area is further investigated. Thereafter, a stability test was carried out to evaluate the performance of ASE (sulfate-modified-Al2O3 catalysts), ACSE (cerium-modified-Al2O3 catalysts), and AZSE (zirconium-modified-Al2O3 catalysts) for C4F8 destruction. Ethanol was used to modify catalysts and is designated with the symbol (E). The results of the stability test show that the performances ACSE>AZSE>ASE for C4F8 conversion at 650oC during 24 h reaction. Coupling effects of water and oxygen content have been evaluated. Overall, the ACSE catalyst shows good performance at 650oC. The highest conversion by catalytic pyrolysis was 9.56 % at 650oC in the absence of water vapor. The highest conversion by catalytic hydrolysis was 100% at 550oC with 38% H2O(g). Furthermore, the highest conversion by catalytic oxidation was 95% at 650oC with 21% oxygen. Coupling of catalytic hydrolysis and oxidation achieves 91% C4F8 conversion at 450oC. The activation energies of ACSE catalysts in catalytic hydrolysis, pyrolysis, and oxidation are 67.2, 60.1, and 79.9 kJ/mol, respectively. The major products from C4F8 conversion include CO2, CO, and COF2. Small amounts of CHF3, C2F4, C3F6O were also identified as products. This study has confirmed that modifying alumina-based catalysts with cerium, sulfate, and ethanol improves the activity and stability of alumina-based catalysts for C4F8 conversion.
3 and SF6 emissions from
semiconductor manufacturing,” Good Pract. Guid. Uncertain. Manag.
Natinoal Greenh. Gas Invent., pp. 243–255, 1998.
Broyer E., Bekker A.Y., Ritter A.B., “Kinetics of the pyrolysis of
chlorodifluoromethane”. Ind Eng Chem Res., vol. 27, no.1, pp.211, 1962.
Busca G., “Structural, Surface, and Catalytic Properties of Aluminas.” Elsevier
Inc. 1st ed., vol. 57, 2014.
Butler J.N., “Octafluorocyclobutane the thermal decomposition of
octafluorocyclobutane”. J Chem Phys., vol. 84, pp.1393-1398,1962.
Chen L., Ondarts M., Outin J., Gontheir Y., Gonze E., “Catalytic decomposition
performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3
catalyst modified by a cost-effective chemical grafting method,” J.
Environ. Sci., vol. 74, pp. 58–70, 2018.
Chen Y.S., Pan K.L., Chang M.B., “Application of plasma catalysis system for
C4F8 removal. Environmental Science and Pollution Research.”
https://doi.org/10.1007/s11356-021-14649-0, 2021.
Compounds summary of octafluorocyclobutane., “Octafluorocyclobutane
@pubchem.ncbi.nlm.nih.gov” [Online]. Available:
https://pubchem.ncbi.nlm.nih.gov/compound/Octafluorocyclobutane.
Davis M. E., Davis R. J., “Fundamentals of chemical reaction engineering.”
2013.
El-Bahy Z.M., Ohnishi R., Ichikawa M., “Hydrolysis of CF4 over alumina-based
binary metal oxide catalysts,” Appl. Catal. B Environ., vol. 40, no. 2, pp.
81–91, 2003.60
Farris M.M., Klinghoffer A.A., Rossnl J.A., Tevault R., “Deactivation of a
Pt/Al2O3 catalyst during the oxidation of hexafluoropropylene” Catal.
Today, vol. 2, pp. 501–516, 1992.
IC Insights., “Global-wafer-capacity-2021-2025-report@www.icinsights.com”
[Online]. Available: https://www.icinsights.com/services/global-wafercapacity/.
Iordanidis A. A., “Mathematical Modeling of Catalytic Fixed Bed Reactors.”
2002.
Lee H.M., and Chen S.H., “Thermal abatement of perfluorocompounds with
plasma torches.” Energy Procedia. Vol. 142, pp. 3637-3643, 2017.
Leu C., “SF6 emissions abatement strategy in Taiwan.” Saf. Heal, 2007.
Mühle., “Perfluorocyclobutane atmosphere in the global.” UNFCC. vol. 9, pp.
1–19, 2019.
NIST., “Cbook@Webbook.Nist.Gov,” [Online]. Available:
https://webbook.nist.gov/cgi/cbook.cgi?Name=Decane&Units=SI.
Orkin V.L., “Rate constants for the reactions between OH and perfluorinated
alkenes.” J Phys Chem A. vol.115, pp.6568-6574, 2011.
Pan K.L., Chen Y.S., Chang M.B., “Effective removal of CF4 by combining
nonthermal plasma with γ-Al2O3,” Plasma Chem. Plasma Process., vol. 39,
no. 4, pp. 877–896, 2019.
Passos A.R., Pulcinelli S.H., Briois V., Santilli S.V., “High surface area
hierarchical porous Al2O3 prepared by the integration of sol-gel transition
and phase separation”. J Name. vol.0, pp.13, 2013.
Pubchem., “Octafluorocyclobutane@pubchem.ncbi.nlm.nih.gov,” C4F8. 2021,
[Online].61
Available:https://pubchem.ncbi.nlm.nih.gov/compound/Octafluorocyclobut
ane
Reddy B. M., Sreekanth P. M., Reddy V. R., “Modified zirconia solid acid
catalysts for organic synthesis and transformations,” J. Mol. Catal. A Chem.,
vol. 225, no. 1, pp. 71–78, 2005.
Rossin J.A., and Feaver W.B., “Catalytic processes for the reduction of
perfluorinated compounds and hydrofluorocarbons,” vol. 2, no. 12, 2004.
Song J.Y., Chung S.H., Kim M.S., Seo M.G., Lee Y.H., Lee K.Y., Kim J.S.,
“The catalytic decomposition of CF4 over Ce/Al2O 3 modified by a cerium
sulfate precursor,” J. Mol. Catal. A Chem., vol. 370, pp. 50–55, 2013.
Spasova. I., Nikolov. P., Mehandjiev. D., “Ozone decomposition over aluminasupported copper, manganese and copper-manganese catalysts,” Ozone.
Sci. Eng., vol.29, pp. 41–45, 2007.
Takita Y., Ninomiya M., Matsuzaki R., Wakamatsu H., Nishiguchi H., Ishihara
T., “Decomposition of chlorofluorocarbons over metal phosphate catalysts
part I. decomposition of CCI2F2 over metal phosphate catalysts,” Phys.
Chem. Chem. Phys., vol. 9, pp. 2367–2372, 1998.
Takita Y., Ninomiya M., Miyake H., Wakamatsu H., Yoshinaga Y., Ishihara T.,
“Catalytic decomposition of perfluorocarbons,” Phys. Chem. Chem. Phys.,
vol. 1, pp. 4501–4504, 1999.
Trowbridge L.D., “Potential hazards relating to pyrolysis of c-C4F8 n-C4F10 and
c-C4F8 in selected gaseous diffusion plant operations.” Lockheed Martin
Energy Res Corp. vol.0, pp.58, 2000.
U.S. EPA., “Fluorinated-greenhouse-gas-emissions-and-supplies-reportedghgrp@www.epa.gov,” Fluorinated Greenhouse Gas Emissions. 2021,62
[Online]. Available: https://www.epa.gov/ghgreporting/fluorinatedgreenhouse-gas-emissions-and-supplies-reported-ghgrp.
U.S. EPA., “Overview-greenhouse-gases@www.epa.gov,” Greenhouse Gas
Emissions. 2015, [Online]. Available:
https://www.epa.gov/ghgemissions/overview-greenhouse-gases.
Vasekova. E., Drage E.A., Smith K.M., Mason N.J., “FTIR spectroscopy and
radiative forcing of octafluorocyclobutane and octofluorocyclopentene,” J.
Quant. Spectrosc. Radiat. Transf., vol. 102, no. 3, pp. 418–424, 2006.
Yu S.J., and Chang M.B., “Oxidative conversion of PFC via plasma processing
with dielectric barrier discharges.” Plasma Chem Plasma Proc. vol. 21,
no.3, pp.311–327, 2001.
Zhang Y., Li Y., Zhang X., Xiao S., Tang J., “Insights on decomposition process
of c-C4F8 and c-C4F8/N2 mixture as substitutes for SF6.” R Soc Open Sci.
vol. 5, pp. 81104, 2018