| 研究生: |
蔡季廷 Chi-Ting Tsai |
|---|---|
| 論文名稱: |
Exploration of new methods for growing Ag films on Au(111) studied by ARPES |
| 指導教授: |
陸大安
Dah-An Luh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 量子井 |
| 外文關鍵詞: | Ag/Au(111) quantum well state |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜系統在工業科技上或是科學研究上都扮演著重要的角色,然而製備大尺度平坦薄膜卻不是件容易的事,我們的動機是尋找一個方法能製備大尺度平坦薄膜。我們所採用的系統是Ag/Au(111)系統,電子被限制在銀薄膜裡或是表面上形成量子化的能態,利用角度解析光電子能譜術與量子化能態對厚度上的關係來解析薄膜厚度上的分佈。
我們所採取製備薄膜的方法為在低溫下蒸鍍銀原子,並且緩慢回溫至接近室溫,在銀薄膜厚度較小的情況下,可使用表面態來解析厚度上的分佈,在銀薄膜較厚的情況下因表面態對厚度的變化量很小,需藉著其他量子態來解析厚度。實驗結果顯示低溫下蒸鍍再回溫的方法是一個製備平坦薄膜的方法,在回溫的過程中,觀察角度解析光電子能譜我們發現一些有趣的新現象,並嘗試用物理模型來解釋。
Thin film systems play important roles in technology industry and scientific investigation. However, preparing atomically flat thin films over a macroscopic region is not an easy thing. Our motivation is trying to find a new method for growing flat thin films over a macroscopic region. The system in our investigation we used is Ag/A2u(111) quantum well system. Electron confinement inside Ag films causes quantization of electronic energy states. We use angle resolved photoelectron spectroscopy to investigate the thickness variation of thin films.
The method we adopted is low temperature deposition and annealing to near room temperature. In the low coverage case, it could use the surface state to resolve the thickness variation. However in the high coverage case, it must use quantum well states to resolve. The results of our experiments show that low temperature deposition and annealing process is a good way to prepare flat thin films. The photoelectron spectra at different temperature measured during the annealing process shows some interesting physical phenomenon. We have a physical model to explain this phenomenon.
[1] King-Ning Tu, James W. Mayer, and Leonard C. Feldman, Electronic thin film
science for electrical engineers and material scientists, Macmillan Publishing Company
(1992)
[2] Alberto Pimpinelli and Jacques Villan, Physics of crystal growth, Cambridge University
Press (1998)
[3] T. Miller, A. Samsavar, G. E. Franklin, and T.-C. Chiang, PRL 61, 1404 (1998)
[4] Arthur R Smith, Kuo-Jen Chao, Qian Niu, and Chih-Kang Shin, Science 273,
226 (1996)
[5] H. Cercellier, C. Didiot, Y. Fagot-Revurat, B. Kierren, L. Moreau, and D Malterre
PRB 73, 195413(2006)
[6] R. Eisberg, R. Resnick, Quantum physics of atoms, molecules, solids, nuclei, and
particles, Second edition, Wiley, 1985.
[7] S. Hufner, Photoelectron Spectroscopy: Principle and Application, Third edition, Springer,
2003.
[8] H. Luth, Surfaces and interfaces of solid materials, Third edition, Springer, 1997.
[9] A. Zangwill, Physics at surface, Cambridge University Press, 1988, page 75.
[10] D. P. Woodruff and T. A. Delchar, Modern techniques of surface science, Cambridge
University press, 1986.
[11] S. Hufner, Photoelectron Spectroscopy: Principle and Application, Third edition,
Springer, 2003.
[12] Yip-Wah Chung, Practical guide to surface science and spectroscopy, Academic Press,
2001.
[13] H. Cercellier, C. Didiot, Y. Fagot-Revurat, B. Kierren, L. Moreau, and D Malterre
PRB 73, 195413(2006)
[14] T. Miller, A. Samsavar, G. E. Franklin, and T.-C. Chiang, PRL 61, 1404 (1998)
[15] Alberto Pimpinelli and Jacques Villan, Physics of crystal growth, Cambridge University
Press (1998)
[16] D. A. Papaconstantopoulos, Handbook of the band structure of elemental solids, Plenum,
1986.
[17] Basic vacuum practice, Third edition, Varian vacuum products,1992.
[18] User’ Guide VUV 5000 Source, GAMMADATA
[19] Quartz crystal thickness monitor manual, LEYBOLD INFICON INC
[20] Instruction manual UHV Evaporator EFM3, Omicron NanoTechnology
[21] T. Miller, A. Samsavar, G. E. Franklin, and T.-C. Chiang, PRL 61, 1404 (1998)
[22] H. Cercellier, C. Didiot, Y. Fagot-Revurat, B. Kierren, L. Moreau, and D Malterre
PRB 73, 195413(2006)