| 研究生: |
游士賢 Shih-hsien Yu |
|---|---|
| 論文名稱: |
雙離子性刷狀高分子於聚苯乙烯組織培養皿之表面接枝控制與其抗菌性質之研究 Studies of surface grafting control and characterization of zwitterionic polymer brushes on tissue culture polystyrene plates and of their anti-bacterial properties |
| 指導教授: |
陳文逸
Wen-Yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 雙離子性高分子 、抗菌 、抗生物沾黏 |
| 外文關鍵詞: | zwitteionic polymer, antibacterial, antifouling |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用臭氧活化聚苯乙烯材料表面,後以熱聚合的方式將雙離子性高分子poly(sulfobetaine methacrylate) (polySBMA)、不帶電高分子poly(ethylene methacrylate)(polyPEGMA)、帶正電的高分子poly(trimethylammonium methacrylate) (polyTM)及帶負
電的高分子poly(Sulfopropyl methacrylate) (polySA)接枝於表面。高分子於材料表面呈梳狀排列的接枝度將可被有效的控制,並且能展現不同接枝度表面的親水性;而聚苯乙烯組織培養皿上高分子鏈的涵水行為將可藉由表面上高分子接枝度的不同而被控制。於本實驗中,我們藉由定量出高分子於材料表面的覆蓋量,而去探討高分子覆蓋量影響細菌於表面貼附且產生生物膜的關係,並且進一步比較纖維母細胞與細菌,因生物分子表面與材料表面間的靜電作用或親疏水性作用,而於材料表面的貼附行為。而經由原子自由基轉移法而將高分子完美覆蓋於表面的改質材料與未改質的材料將被應用作於高分子材料抗菌能力的參考與對照。短時間(三小時)與長時間(二十四小時)於材料上培養的兩株細菌(革蘭氏陽性菌:表皮葡萄球菌與革蘭氏陰性菌:大腸桿菌)與纖維母細胞,將在37℃下進行靜態與動態的培養,以觀察在兩培養系統中生物分子的貼附情形。結果顯示,纖維母細胞在表面為帶電高分子(polySA 與polyTM)接枝的材料上,尤其是帶正電的材料表面,將無法減少貼附的數量,而在不帶電高分子(polyPEGMA)與電中性高分子(polySBMA) 接枝的材料上,將可有效抑制纖維母細胞的貼附;但由細菌貼附於改質材料表面的結果來看,除了帶正電polyTM 接枝的材料表面之外,其餘帶負電polySA、不帶電polyPEGMA 與電中性polySBMA 接枝的表面都能有效的隨著表面接枝度增加而提升抗菌貼附能力,其最大的因素便來自於帶負電的細菌表面與改質材料間的靜電作用所致。然而,由實驗結果觀察到,在短/長時間細菌貼附實驗中,表皮葡萄球菌於靜態培養系統中在材料表面所增加的貼附數量比大腸桿菌來得多;而在動態培養系統中,表皮葡萄球菌由材料表面的脫附數量又會較大腸桿菌的數量來得多。由以上的結果顯示,表皮葡萄球菌在材料表面貼附聚集的速度比大腸桿菌來得快,而大腸桿菌會較難由已貼附的表面去除,原因來自於大腸桿菌的細胞表面較表皮葡萄球菌來得更為親水,因而造成如此差異。
In this study, polystyrene surfaces were grafted with zwitterionic polymer brushes of poly(sulfobetaine methacrylate) (polySBMA) ,non-charged polymer brushes of poly(ethylene methacrylate) (polyPEGMA), positive-charged polymer brushes of poly(Sulfopropyl methacrylate) (polySA) and negative-charged polymer brushes of poly(trimethylammonium methacrylate) (polyTM). These were prepared via surface-activated ozone treatment and
thermally induced graft copolymerization.Surface packing property of polymer brushes exhibited controllable packing and showed different surface hydrophilicity. The hydration behavior of polymer chains on the resulting TCPS plates can be controlled by the grafting density of polymer on the TCPS surface. In this study, we quantify how surface packing densities of polymer affect bacterial adhesion and biofilm formation on the modified surfaces, and then compare fibroblast cell and bacteria attachment on the material surface owing to electrostatic interaction , or
hydrophilic and hydrophilic interaction, between the biological molecules and material surfaces.
A well-packed polymer grafted surface via surface-initiated atom transfer radical polymerization (ATRP) was also studied for comparison of anti-bacterial and un-modified TCPS surface was chosen as reference. The short-term adhesion (3 h) and the long-term accumulation (24 h) of two bacterial species (Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli), and fibroblast cells on these surfaces in static or dynamic
incubation at 37oC to observe the biological molecules attached on the surfaces of modified materials in two culture system.
The relative cell adhesion on the surface grafted by charged polymer(polySA and polyTM) were both not reduced, especially for positive-charged polyTM、non-charged polymer (polyPEGMA) and zwitterionic neutral polymer (polySBMA) will be effectively suppressed. Relative bacterial adhesion on the surface, except for positive-charged polyTM,negative-charged polySA、non-charged polymer (polyPEGMA) and zwitterionic neutral
polymer (polySBMA) was effectively reduced with increasing surface packing densities of polymer brush grafted on the TCPS surface. The major reason was responsible for the
electrostatic interaction between negative charge of bacteria surface and the material surfaces.
However, the increasing amount of Staphylococcus epidermidis short/long-term accumulation on the modified materials in the static incubation was more than Escherichia coli, and in the dynamic incubation, the detachable numbers of Staphylococcus epidermidis
was also larger than Escherichia coli. Above results was shown the attachment rate of Staphylococcus epidermidis was faster than Escherichia coli, and Escherichia coli were hard to remove once they attached on the materials because of their cell surface was more hydrophilic than Staphylococcus epidermidis.
1. Senaratne, W.; Andruzzi, L.; Ober, C. K., Self-assembled monolayers and polymer
brushes in biotechnology: Current applications and future perspectives.
Biomacromolecules 2005, 6, (5), 2427-2448.
2. Xu, J. M.; Yuan, Y. L.; Shan, B.; Shen, J.; Lin, S. C., Ozone-induced grafting
phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl
phosphorylcholine onto silicone film to improve hemocompatibility. Colloids and
Surfaces B-Biointerfaces 2003, 30, (3), 215-223.
3. Buddy D. Ratner, A. S. H., Frederick J. Schoen, Jack E. Lemons, Biomaterials
Science. 1996.
4. Cheng, G.; Zhang, Z.; Chen, S. F.; Bryers, J. D.; Jiang, S. Y., Inhibition of bacterial
adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 2007, 28, (29),
4192-4199.
5. Holmberg, K.; Bergstrom, K.; Brink, C.; Osterberg, E.; Tiberg, F.; Harris, J. M.,
Effects on Protein Adsorption, Bacterial Adhesion and Contact-Angle of Grafting
Peg Chains to Polystyrene. Journal of Adhesion Science and Technology 1993, 7, (6),
503-517.
6. Harris, L. G.; Tosatti, S.; Wieland, M.; Textor, M.; Richards, R. G., Staphylococcus
aureus adhesion to titanium oxide surfaces coated with non-functionalized and
peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers.
Biomaterials 2004, 25, (18), 4135-4148.
7. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A
survey of structure-property relationships of surfaces that resist the adsorption of
protein. Langmuir 2001, 17, (18), 5605-5620.
8. Holmlin, R. E.; Chen, X. X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M.,
Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous
buffer. Langmuir 2001, 17, (9), 2841-2850.
9. Cho, W. K.; Kong, B. Y.; Choi, I. S., Highly efficient non-biofouling coating of
zwitterionic polymers: Poly((3-(methacryloylamino)propyl) -dimethyl
(3-sulfopropyl)ammonium hydroxide). Langmuir 2007, 23, (10), 5678-5682.
10. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y., Superlow fouling sulfobetaine and
carboxybetaine polymers on glass slides. Langmuir 2006, 22, (24), 10072-10077.
11. Chang, Y.; Chen, S. F.; Zhang, Z.; Jiang, S. Y., Highly protein-resistant coatings
from well-defined diblock copolymers containing sulfobetaines. Langmuir 2006, 22,
(5), 2222-2226.
12. Zhang, Z.; Chen, S. F.; Chang, Y.; Jiang, S. Y., Surface grafted sulfobetaine
polymers via atom transfer radical polymerization as superlow fouling coatings.
Journal of Physical Chemistry B 2006, 110, (22), 10799-10804.
13. Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y., Strong resistance of phosphorylcholine
self-assembled monolayers to protein adsorption: Insights into nonfouling
properties of zwitterionic materials. Journal of the American Chemical Society 2005,
127, (41), 14473-14478.
14. Tu, C. Y.; Liu, Y. L.; Lee, K. R.; Lai, J. Y., Surface grafting polymerization and
modification on poly (tetrafluoroethylene) films by means of ozone treatment.
Polymer 2005, 46, (18), 6976-6985.
15. Chang, Y.; Liao, S. C.; Higuchi, A.; Ruaan, R. C.; Chu, C. W.; Chen, W. Y., A
Highly stable nonbiofouling surface with well-packed grafted zwitterionic
polysulfobetaine for plasma protein repulsion. Langmuir 2008, 24, (10), 5453-5458.
16. Krishnan, S.; Weinman, C. J.; Ober, C. K., Advances in polymers for
anti-biofouling surfaces. Journal of Materials Chemistry 2008, 18, (29), 3405-3413.
17. Joon B. Park; Roderic S. Lakes, Biomaterials. 1992.
18. Prime, K. L.; Whitesides, G. M., Adsorption of Proteins onto Surfaces Containing
End-Attached Oligo(Ethylene Oxide) - a Model System Using Self-Assembled
Monolayers. Journal of the American Chemical Society 1993, 115, (23), 10714-10721.
19. Dalsin, J. L.; Messersmith, P. B., Bioinspired antifouling polymers. Materials Today
2005, 8, (9), 38-46.
20. 俞耀庭; 張興棟; 林峰輝; 白育綸, 生物醫用材料. 新文京開發出版股份有限公司:
2004.
21. Ayres, L.; Vos, M. R. J.; Adams, P. J. H. M.; Shklyarevskiy, I. O.; van Hest, J. C.
M., Elastin-based side-chain polymers synthesized by ATRP. Macromolecules 2003,
36, (16), 5967-5973.
22. Gombotz, W. R.; Guanghui, W.; Horbett, T. A.; Hoffman, A. S., Protein Adsorption
to Poly(Ethylene Oxide) Surfaces. Journal of Biomedical Materials Research 1991,
25, (12), 1547-1562.
23. Jo, S.; Park, K., Surface modification using silanated poly(ethylene glycol)s.
Biomaterials 2000, 21, (6), 605-616.
24. Liu, V. A.; Jastromb, W. E.; Bhatia, S. N., Engineering protein and cell adhesivity
using PEO-terminated triblock polymers. Journal of Biomedical Materials Research
2002, 60, (1), 126-134.
25. Higuchi, A.; Aoki, N.; Yamamoto, T.; Miyazaki, T.; Fukushima, H.; Tak, T. M.;
Jyujyoji, S.; Egashira, S.; Matsuoka, Y.; Natori, S. H., Temperature-induced cell
detachment on immobilized pluronic surface. Journal of Biomedical Materials
Research Part A 2006, 79A, (2), 380-392.
26. Georgiev, G. S.; Karnenska, E. B.; Vassileva, E. D.; Kamenova, I. P.; Georgieva, V.
T.; Iliev, S. B.; Ivanov, I. A., Self-assembly, anti polyelectrolyte effect, and
nonbiofouling properties of polyzwitterions. Biomacromolecules 2006, 7, (4),
1329-1334.
27. Singer S. J. ; Nicolson G. L., The fluid mosaic model of the structure of cell
membranes Science 1972, 175, (23), 720-731.
28. Campbell, N. A.; Reece, J. B., Biology. 2003.
29. Lewis, A. L., Phosphorylcholine-based polymers and their use in the prevention of
biofouling. Colloids and Surfaces B-Biointerfaces 2000, 18, (3-4), 261-275.
30. Hayward, J. A.; Chapman, D., Biomembrane surfaces as models for polymer
design: the potential for haemocompatibility. Biomaterials 1984, 5, (3), 135-142.
31. Kadoma Y; Nakabayashi N; Masuhara E; Yamauchi J, Synthesis and hemopolysis
test of polymer containing phophorylcholine groups. Koubunshi Ronbunshu (Jpn J
Polym Sci Technol) 1978, 35, 423-427.
32. Ishihara K; Ueda T; Nakabayashi N, Preparation of Phospholipid Polylners and
Their Properties as Polymer Hydrogel Membranes. Polymer Journal 1990, 22, (5),
355-360.
33. Feng, W.; Zhu, S. P.; Ishihara, K.; Brash, J. L., Adsorption of fibrinogen and
lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine)
via surface-initiated atom transfer radical polymerization. Langmuir 2005, 21, (13),
5980-5987.
34. Ostuni, E.; Chapman, R. G.; Liang, M. N.; Meluleni, G.; Pier, G.; Ingber, D. E.;
Whitesides, G. M., Self-assembled monolayers that resist the adsorption of proteins
and the adhesion of bacterial and mammalian cells. Langmuir 2001, 17, (20),
6336-6343.
35. Yang, W.; Chen, S. F.; Cheng, G.; Vaisocherova, H.; Xue, H.; Li, W.; Zhang, J. L.;
Jiang, S. Y., Film thickness dependence of protein adsorption from blood serum and
plasma onto poly(sulfobetaine)-grafted surfaces. Langmuir 2008, 24, (17),
9211-9214.
36. Cheng, N.; Brown, A. A.; Azzaroni, O.; Huck, W. T. S., Thickness-dependent
properties of polyzwitterionic brushes. Macromolecules 2008, 41, (17), 6317-6321.
37. Chang, Y.; Chen, S. F.; Yu, Q. M.; Zhang, Z.; Bernards, M.; Jiang, S. Y.,
Development of biocompatible interpenetrating polymer networks containing a
sulfobetaine-based polymer and a segmented polyurethane for protein resistance.
Biomacromolecules 2007, 8, (1), 122-127.
38. Zhang, J.; Yuan, J.; Yuan, Y. L.; Shen, J.; Lin, S. C., Chemical modification of
cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve
hemocompatibility. Colloids and Surfaces B-Biointerfaces 2003, 30, (3), 249-257.
39. Yuan, Y. L.; Zhang, J.; Ai, F.; Yuan, J.; Zhou, J.; Shen, J.; Lin, S. C., Surface
modification of SPEU films by ozone induced graft copolymerization to improve
hemocompatibility. Colloids and Surfaces B-Biointerfaces 2003, 29, (4), 247-256.
40. Yuan, J.; Chen, L.; Jiang, X. F.; Shen, J.; Lin, S. C., Chemical graft polymerization
of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion.
Colloids and Surfaces B-Biointerfaces 2004, 39, (1-2), 87-94.
41. Zhou, J.; Yuan, J.; Zang, X. P.; Shen, J.; Lin, S. C., Platelet adhesion and protein
adsorption on silicone rubber surface by ozone-induced grafted polymerization
with carboxybetaine monomer. Colloids and Surfaces B-Biointerfaces 2005, 41, (1),
55-62.
42. Zhang, Z.; Chen, S. F.; Jiang, S. Y., Dual-functional biomimetic materials:
Nonfouling poly(carboxybetaine) with active functional groups for protein
immobilization. Biomacromolecules 2006, 7, (12), 3311-3315.
43. Cheng, G.; Xite, H.; Zhang, Z.; Chen, S. F.; Jiang, S. Y., A Switchable
Biocompatible Polymer Surface with Self-Sterilizing and Nonfouling Capabilities.
Angewandte Chemie-International Edition 2008, 47, (46), 8831-8834.
44. Davies, D. G.; Geesey, G. G., Regulation of the Alginate Biosynthesis Gene Algc in
Pseudomonas-Aeruginosa during Biofilm Development in Continuous-Culture.
Applied and Environmental Microbiology 1995, 61, (3), 860-867.
45. Liu, Y.; Yang, C. H.; Li, J., Influence of extracellular polymeric substances on
Pseudomonas aeruginosa transport and deposition profiles in porous media.
Environmental Science & Technology 2007, 41, (1), 198-205.
46. Gerad J. Tortora, B. R. F., Christine L. Case MICROBIOLOGY An Introduction.
Benjamin/Cummings Publishing Company: 1998.
47. 梁維杰SUS430 含銅抗菌不銹鋼之性質研究; 國立臺灣大學材料科學與工程學研
究所, 2000.
48. Alcamo, I. E., Fundamentals of Microbiology. Baker & Taylor Books: 1997.
49. Mills, A. L.; Herman, J. S.; Hornberger, G. M.; Dejesus, T. H., Effect of Solution
Ionic-Strength and Iron Coatings on Mineral Grains on the Sorption of
Bacterial-Cells to Quartz Sand. Applied and Environmental Microbiology 1994, 60, (9),
3300-3306.
50. Gannon, J.; Tan, Y. H.; Baveye, P.; Alexander, M., Effect of Sodium-Chloride on
Transport of Bacteria in a Saturated Aquifer Material. Applied and Environmental
Microbiology 1991, 57, (9), 2497-2501.
51. Poortinga, A. T.; Bos, R.; Norde, W.; Busscher, H. J., Electric double layer
interactions in bacterial adhesion to surfaces. Surface Science Reports 2002, 47, (1),
3-32.
52. Jucker, B. A.; Harms, H.; Zehnder, A. J. B., Adhesion of the positively charged bacterium
Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon. Journal of
Bacteriology 1996, 178, (18), 5472-5479.
53. Harkes, G.; Feijen, J.; Dankert, J., Adhesion of Escherichia-Coli on to a Series of
Poly(Methacrylates) Differing in Charge and Hydrophobicity. Biomaterials 1991,
12, (9), 853-860.
54. Hogt, A. H., J. Dankert, and J. Feijen., Adhesion of coagulase-negative
staphylococci to methacrylate polymers and copolymers. Journal of Biomedical
Materials Research 1986, 20, 533-545.
55. Gottenbos, B.; Van der Mei, H. C.; Busscher, H. J.; Grijpma, D. W.; Feijen, J.,
Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and
positively charged poly(methacrylates). Journal of Materials Science-Materials in
Medicine 1999, 10, (12), 853-855.
56. Li, B. K.; Logan, B. E., Bacterial adhesion to glass and metal-oxide surfaces.
Colloids and Surfaces B-Biointerfaces 2004, 36, (2), 81-90.
57. Kingshott, P.; Wei, J.; Bagge-Ravn, D.; Gadegaard, N.; Gram, L., Covalent
attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion.
Langmuir 2003, 19, (17), 6912-6921.
58. Wang, I. W.; Anderson, J. M.; Marchant, R. E., Staphylococcus-Epidermidis
Adhesion to Hydrophobic Biomedical Polymer Is Mediated by Platelets. Journal of
Infectious Diseases 1993, 167, (2), 329-336.
59. Wang, I. W.; Anderson, J. M.; Jacobs, M. R.; Marchant, R. E., Adhesion of
Staphylococcus-Epidermidis to Biomedical Polymers - Contributions of Surface
Thermodynamics and Hemodynamic Shear Conditions. Journal of Biomedical
Materials Research 1995, 29, (4), 485-493.
60. Gottenbos, B.; van der Mei, H. C.; Klatter, F.; Nieuwenhuis, P.; Busscher, H. J., In
vitro and in vivo antimicrobial activity of covalently coupled quaternary
ammonium silane coatings on silicone rubber. Biomaterials 2002, 23, (6), 1417-1423.
61. Lee, S. B.; Koepsel, R. R.; Morley, S. W.; Matyjaszewski, K.; Sun, Y. J.; Russell, A.
J., Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer
radical polymerization. Biomacromolecules 2004, 5, (3), 877-882.
62. Filimon, A.; Avram, E.; Dunca, S.; Stoica, L.; Ioan, S., Surface Properties and
Antibacterial Activity of Quaternized Polysulfones. Journal of Applied Polymer
Science 2009, 112, (3), 1808-1816.
63. Terada, A.; Yuasa, A.; Kushimoto, T.; Tsuneda, S.; Katakai, A.; Tamada, M.,
Bacterial adhesion to and viability on positively charged polymer surfaces.
Microbiology 2006, 152, 3575-3583.
64. Klibanov, A. M., Permanently microbicidal materials coatings. Journal of Materials
Chemistry 2007, 17, (24), 2479-2482.
65. 郭惠如Thermus aquaticus NTU103 之Fosmid 選殖株B7F9 與生物膜形成之關
係;慈濟大學微免暨分子醫學研究所, 2007.
66. Roosjen, A.; van der Mei, H. C.; Busscher, H. J.; Norde, W., Microbial adhesion to
poly(ethylene oxide) brushes: Influence of polymer chain length and temperature.
Langmuir 2004, 20, (25), 10949-10955.
67. Wei, J.; Ravn, D. B.; Gram, L.; Kingshott, P., Stainless steel modified with
poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion.
Colloids and Surfaces B-Biointerfaces 2003, 32, (4), 275-291.
68. Roosjen, A.; de Vries, J.; van der Mei, H. C.; Norde, W.; Busscher, H. J., Stability
and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in
biological fluids. Journal of Biomedical Materials Research Part B-Applied
Biomaterials 2005, 73B, (2), 347-354.
69. Nejadnik, M. R.; van der Mei, H. C.; Norde, W.; Busscher, H. J., Bacterial adhesion
and growth on a polymer brush-coating. Biomaterials 2008, 29, (30), 4117-4121.
70. Baumgartner, J. N.; Cooper, S. L., Influence of thrombus components in mediating
Staphylococcus aureus adhesion to polyurethane surfaces. Journal of Biomedical
Materials Research 1998, 40, (4), 660-670.
71. Hirota, K.; Murakami, K.; Nemoto, K.; Miyake, Y., Coating of a surface with
2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces
retention of human pathogenic microorganisms. Fems Microbiology Letters 2005,
248, (1), 37-45.
72. Li, G. Z.; Cheng, G.; Xue, H.; Chen, S. F.; Zhang, F. B.; Jiang, S. Y., Ultra low
fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008,
29, (35), 4592-4597.
73. Li, G. Z.; Xue, H.; Cheng, G.; Chen, S. F.; Zhang, F. B.; Jiang, S. Y., Ultralow
Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via
an Adhesive Mussel Mimetic Linkage. Journal of Physical Chemistry B 2008, 112,
(48), 15269-15274.
74. Giammona, G.; Pitarresi, G.; Craparo, E. F.; Cavallaro, G.; Buscemi, S., New
biodegradable hydrogels based on a photo-cross-linkable polyaspartamide and
poly(ethylene glycol) derivatives. Release studies of an anticancer drug. Colloid and
Polymer Science 2001, 279, (8), 771-783.
75. Nakayama, Y.; Matsuda, T., Preparation and Characteristics of Photocrosslinkable
Hydrophilic Polymer Having Cinnamate Moiety. Journal of Polymer Science Part
a-Polymer Chemistry 1992, 30, (11), 2451-2457.
76. Goswami, S.; Chakrabarty, D., Synthesis and characterization of sequential
interpenetrating polymer networks of novolac resin and poly(ethyl acrylate).
Journal of Applied Polymer Science 2006, 99, (6), 2857-2867.
77. Pyun, J.; Kowalewski, T.; Matyjaszewski, K., Synthesis of polymer brushes using
atom transfer radical polymerization. Macromolecular Rapid Communications 2003,
24, (18), 1043-1059.
78. Pyun J.; T. Kowalewski, K. M., Synthesis of polymer brushes using atom transfer
radical polymerization. Macromolecular Rapid Communications 2003, 24, (18),
1043-1059.
79. Dogue, I. L. J.; Forch, R.; Mermilliod, N., Plasma-induced hydrogel grafting of
vinyl monomers on polypropylene. Journal of Adhesion Science and Technology
1995, 9, (12), 1531-1545.
80. Zou, X. P.; Kang, E. T.; Neoh, K. G., Plasma-induced graft polymerization of
poly(ethylene glycol) methyl ether methacrylate on poly (tetrafluoroethylene) films
for reduction in protein adsorption. Surface & Coatings Technology 2002, 149, (2-3),
119-128.
81. Gupta, B.; Saxena, S.; Ray, A., Plasma induced graft polymerization of acrylic acid
onto polypropylene monofilament. Journal of Applied Polymer Science 2008, 107,
(1), 324-330.
82. Wavhal, D. S.; Fisher, E. R., Membrane surface modification by plasma-induced
polymerization of acrylamide for improved surface properties and reduced protein
fouling. Langmuir 2003, 19, (1), 79-85.
83. Wang, Y.; Kim, J. H.; Choo, K. H.; Lee, Y. S.; Lee, C. H., Hydrophilic modification
of polypropylene microfiltration membranes by ozone-induced graft
polymerization. Journal of Membrane Science 2000, 169, (2), 269-276.
84. Zhai, G. Q.; Kang, E. T.; Neoh, K. G., Inimer graft-copolymerized poly(vinylidene
fluoride) for the preparation of arborescent copolymers and "surface-active"
copolymer membranes. Macromolecules 2004, 37, (19), 7240-7249.
85. Xu, F. J.; Yuan, Z. L.; Kang, E. T.; Neoh, K. G., Branched fluoropolymer-Si hybrids
via surface-initiated ATRP of pentafluorostyrene on hydrogen-terminated Si(100)
surfaces. Langmuir 2004, 20, (19), 8200-8208.
86. Yamauchi, J.; Yamaoka, A.; Ikemoto, K.; Matsui, T., Graft-Copolymerization of
Methyl-Methacrylate onto Polypropylene Oxidized with Ozone. Journal of Applied
Polymer Science 1991, 43, (6), 1197-1203.
87. Karlsson, J. O.; Gatenholm, P., Preparation and characterization of
cellulose-supported HEMA hydrogels. Polymer 1997, 38, (18), 4727-4731.
88. Fujimoto, K.; Takebayashi, Y.; Inoue, H.; Ikada, Y., Ozone-Induced
Graft-Polymerization onto Polymer Surface. Journal of Polymer Science Part
a-Polymer Chemistry 1993, 31, (4), 1035-1043.
89. Ko, Y. G.; Kim, Y. H.; Park, K. D.; Lee, H. J.; Lee, W. K.; Park, H. D.; Kim, S. H.;
Lee, G. S.; Ahn, D. J., Immobilization of poly(ethylene glycol) or its sulfonate onto
polymer surfaces by ozone oxidation. Biomaterials 2001, 22, (15), 2115-2123.
90. Murakami, T. N.; Fukushima, Y.; Hirano, Y.; Tokuoka, Y.; Takahashi, M.;
Kawashima, N., Surface modification of polystyrene and poly(methyl methacrylate)
by active oxygen treatment. Colloids and Surfaces B-Biointerfaces 2003, 29, (2-3),
171-179.
91. Chang, Y.; Shih, Y. J.; Ruaan, R. C.; Higuchi, A.; Chen, W. Y.; Lai, J. Y.,
Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform
surface-copolymerized poly(ethylene glycol) methacrylate and improvement of
blood compatibility. Journal of Membrane Science 2008, 309, (1-2), 165-174.
92. Wagner, V. E.; Koberstein, J. T.; Bryers, J. D., Protein and bacterial fouling
characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic
acid) co-polymers. Biomaterials 2004, 25, (12), 2247-2263.
93. Starck, P.; Mosse, W. K. J.; Nicholas, N. J.; Spiniello, M.; Tyrrell, J.; Nelson, A.;
Qiao, G. G.; Ducker, W. A., Surface chemistry and rheology of
polysulfobetaine-coated silica. Langmuir 2007, 23, (14), 7587-7593.
94. Bernards, M. T.; Cheng, G.; Zhang, Z.; Chen, S. F.; Jiang, S. Y., Nonfouling
polymer brushes via surface-initiated, two-component atom transfer radical
polymerization. Macromolecules 2008, 41, (12), 4216-4219.
95. Schneider, G. B.; English, A.; Abraham, M.; Zaharias, R.; Stanford, C.; Keller, J.,
The effect of hydrogel charge density on cell attachment. Biomaterials 2004, 25,
(15), 3023-3028.
96. Webb, K.; Hlady, V.; Tresco, P. A., Relative importance of surface wettability and
charged functional groups on NIH 3T3 fibroblast attachment, spreading, and
cytoskeletal organization. Journal of Biomedical Materials Research 1998, 41, (3),
422-430.
97. De Rosa, M.; Carteni, M.; Petillo, O.; Calarco, A.; Margarucci, S.; Rosso, F.; De
Rosa, A.; Farina, E.; Grippo, P.; Peluso, G., Cationic polyelectrolyte hydrogel
fosters fibroblast spreading, proliferation, and extracellular matrix production:
Implications for tissue engineering. Journal of Cellular Physiology 2004, 198, (1),
133-143.