| 研究生: |
陳運庚 Yun-Geng Chen |
|---|---|
| 論文名稱: |
磷酸亞鐵鋰粉體粒徑對電池性能的影響 Electrochemical Properties of LiFePO4 Prepared Via Ball-milling |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 磷酸亞鐵鋰 、陰極材料 、鋰離子電池 、粒徑大小 、行星式球磨機 |
| 外文關鍵詞: | Particl, Cathode, LiFePO4, Lithium-ion batteries |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將商用材料及實驗室自行合成材料,利用行星式球磨機於大氣中濕式研磨,過濾分離出不同粒徑粉體,但因粉體在空氣中研磨,所以表面遭受到氧化及破壞,故在此利用50 wt.%丙二酸蒸鍍方式於873 K煆燒12小時,以其能修補被破壞的晶相並於磷酸亞鐵鋰粒子表面塗佈一層碳膜,幫助導電。
本製程所製備之不同粒徑粉體材料,經X光粉末繞射分析結果顯示在研磨過程中,經由鋯珠與粉體間的相互碰撞,造成碳膜破壞、脫落及晶相的減弱,但經50 wt.%丙二酸蒸鍍方式於873 K煆燒12小時後,晶相強度回復,藉此方式也於粒子表面塗佈碳膜;藉由SEM觀察材料之表面型態可得知,在研磨的過程中,可縮小粉體粒徑,並藉由鋯珠與粉體的碰撞將粒子變圓滑,趨於球形;另外,為了解材料中碳之塗佈情形,吾人以TEM/ SAED/ EDS進行分析,由EDS發現有些微的碳塗佈於LiFePO4材料表面,且以半透明之碳膜包覆於灰黑色LiFePO4材料表面,經SAED分析後發現為不定型結構之碳。
不同粒徑粉體中,以粒徑最小者電池性能最佳,於充放電截止電壓分別為4.3與2.8 V,0.2 C的測試條下,商用材料232 nm粉體,初始電容量為155 mAh g-1;實驗室自行合成材料205 nm粉體,初始電容量為157 mAh g-1。藉由CV觀察,隨著粉體粒徑的縮小,在動力學上的表現較佳,極化現象也趨於緩和。在不同電流下充放電測試,結果顯示粉體粒徑小者,能承受較高的電流,在商用材料232 nm粉體與實驗室自行合成材料205 nm粉體,所能承受的之最大電流分別為3與5 C;而大粒徑商用材料456 nm粉體與實驗室自行合成材料476 nm粉體,所能承受最大電流分別為1與3 C。
鋰離子電池在大型交通工具的應用中,材料能否具備良好的熱穩定性是重要的關鍵因素,在此經由DSC量測,不同粒徑粉體,在熱穩定性所造成的效應為何,結果顯示,不同的粒徑並不會增加或減少熱量的釋放,其初始溫度與裂解溫度分別為471與528 K,放熱量為95 J g-1。
由四點探針導電度計及比表面積分析結果發現,粉體粒徑小樣品具有較高的導電度與比表面積。粉體粒徑的縮小提升材料導電度至10-4 S cm-1左右,且不管是商用或實驗室自行合成材料,小粒徑粉體的比表面積約是大粒徑粉體兩倍。
LiFePO4 cathode materials with distinct particle sizes were prepared by a planetary ball-milling method. The effect of particle size on the morphology, thermal stability and electrochemical performance of LiFePO4 cathode materials was investigated. The ball-milling method decreased particle size, thereby reducing the length of diffusion and improving the reversibility of the lithium ion intercalation/deintercalation. It is worth noting that the small particle sample prepared using malonic acid as a carbon source achieved a high capacity of 160 mAh g-1 at a 0.1 C-rate and had a very flat capacity curve. However, the large particle sample decayed more dramatically in capacity than the small particle size samples at high C- rates. The improvement in electrode performance was mainly due to the nanometric fine particles, the small size distribution of the product, and the increase in electronic conductivity as a result of carbon coating. The structure and morphology of LiFePO4 samples were characterized with XRD, FE-SEM, TEM, EDS, and DSC techniques.
01. 科報網, http://www.stdaily.com/big5/zoujin863/2005-07/26/content_414108.htm
02. J.M. Tarascon and M. Armand, Nature 414 (2001) 359.
03. B. Scrosati, J. Electrochem. Soc. 139 (1992) 2776.
04. B. Scrosati, F. Croce, S. Panero, J. Power Sources 100 (2001) 93.
05. http://www.gaston-narada.com/tech-certificates.html#d
06. M. Wakihara, Mater. SCI. Engineering R33 (2001)109
07. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Angew. Chem. Int. Ed. 40 (2001) 3367.
08. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid State Ionics 83(1996) 167.
09. Y. Takeda, K. Nakahara, M. Nishijima, N. Imanashi, O. Yamamoto, M.Takano, and R. Kanno, Mater. Res. Bull. 29 (1994) 659.
10. A. Hirano, Solid State Ionics 78 (1995) 123.
11. M. Thackeray, Nature Mater. 1 (2002) 81.
12. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
13. 費定國,“鋰離子電池在電動車市場之展望”,工業材料雜誌229 (2005) 141.
14. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Electrochem. Soc. 144 (1997)1609.
15. http://www.chinabatteries.net/lifeen.htm
16. H. Huang, S.C. Yin, L. F. Nazarz, Electrochem. Solid-State Lett. 4 (2001) A170.
17. G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, J.H. Ahn, J. Power Sources 146 (2005) 521.
18. F. Croce, Electrochem. Solid-State Lett. 5 (2002) A47.
19. S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nature 732 (2002) 22.
20. K. F. Hsu, S.Y. Tsay, B. J. Hwang, J. Power Sources 146 (2005) 529 .
21. H. Xie and Z. Zhou, Electrochim. Acta 51 (2006) 2063.
22. G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou, J. H. Ahn, Electrochim. Acta 50 (2004) 443.
23. P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nature Mater. 3 (2004) 147.
24. M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater. 17 (2005) 5085.
25. J. Ying, M. Lei, C. Jiang, C. Wan, X. He, J. Li, L. Wang, J. Ren, J. Power Sources 158 (2006) 543.
26. S.Y. Chung, Y.-M. Chiang, Electrochem. Solid-State Lett. 6 (2003) A278.
27. J. Molenda, Solid State Ionics 176 (2005) 1687.
28. G. X. Wang, S. L. Bewlay, J. Yao, J. H. Ahn, S. X. Dou, H. K. Liu, Electrochem. Solid-State Lett. 7 (2004) A503.
29. G. X. Wang, S. L. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J. F. Lee, J. M. Chen, J. Electrochem. Soc. 153 (2006) A25.
30. A. Yamada, M. Hosoya, S. C. Chung, Y. Kudo, K. Hinokuma, K. Y. Liu, and Y. Nishi, J. Power Source 119 (2003) 232.
31. N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S. Panero, I. Amadei, J. Euro. Ceram. Soc. 24 (2004) 1381.
32. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, J. Power Sources 134 (2004) 124.
33. C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochem. Solid-State Lett. 9 (2006) A352.
34. D. H. Kim, J. Kim, Electrochem. Solid-State Lett. 9 (2006) A439.
35. W. Li, J. Gao, J. Ying, C. Wan, C. Jiang, J. Electrochem. Soc. 153 (2006) F194.
36. Y. Xia, M. Yoshio, H. Noguchi, Electrochimica Acta 52 (2006) 240
37. J. K. Kim, G. Cheruvally, J. W. Choi, J. U. Kim, J. H. Ahn, G. B. Cho, K. W. Kim, H. J. Ahn, J. Power Sources 166 (2007) 211
38. S.J. Kwon, C.W. Kima, W.T. Jeong, K.S. Lee, J. Power Sources 137 (2004) 93.
39. Z. Xu, L. Xu, Q. Lai, K. Ji, Mater. Chem. Phys. 105 (2007) 80.
40. H. Chen, S. C. Han, W. Z. Yu, H. Z. Bo, C. L. Fan, Z. Y. Xu, Bull. Mater. Sci. 29 (2006) 689.
41. G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc., 149 (2002) A743.
42. J. Jiang, J.R. Dahn, Electrochem. Commun. 6 (2004) 724.
43. G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, J. Solid State Electrochem. 12 (2008) 825.
44. 卓永達, 碩士論文, 國立中央大學, 中華民國台灣 (2002).
45. 張忠勝, 碩士論文, 國立中央大學, 中華民國台灣 (2007).
46. A. Calka, D. Wexler, Nature 419 (2002) 12.
47. H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources 159 (2006) 717.
48. L. Wang, Y. Huang, R. Jiang, D. Jia, J. Electrochem. Soc. 154 (2007) A1015.
49. T. Drezen, N. H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, J. Power Sources 174 (2007) 949.
50. R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar,D. Hanzel, J. Jamnika, J. Electrochem. Soc. 152 (2005) A858.
51. L. J. van der Pauw, Phil. Res. Rep. 13(1958) 1.
52. M. I. Current and M.J. Market, Ion Implantation: Science and Technology (J.F. Ziegler, ed.), Academic Press, Orlando, FL (1984) 487.
53. J. D. Wilcox, M. M. Doeff, M. Marcinek, Robert Kostecki, J. Electrochem. Soc. 154 (2007) A389.
54. Y. M. Choi, S. Pyun, J. S. Bae, S. I. Moon, J. Power Sources, 56 (1995) 25.
55. E. Rossen, C.D. Jones, J.R. Dahn, Solid State Ionics, 57 (1992) 311.