跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳裕麒
Yu-Chi Chen
論文名稱: 顯性或隱性有限元素模型對於擬靜態拉伸試驗的優缺點比較
Pro-con comparison between explicit and implicit finite element models for quasi-static tensile tests
指導教授: 鍾禎元
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 擬靜態拉伸試驗顯性求解隱性求解非線性分析
外文關鍵詞: Quasi-static, Tensile test, Explicit solver, Implicit solver, Nonlinear analysis
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過ANSYS Mechanical 和LS-DYNA兩種求解器,對擬靜態拉伸試驗進行隱性與顯性求解,並使用兩種材料模型Bi-linear (BISO)與Multi-linear (MISO)應力-應變曲線來模擬降伏點後的力學行為,最後根據實驗值與模擬值誤差和求解效率,比較兩者方法之優缺點。
    首先利用MTS810針對熱浸鍍鋅鋼(SGCC)試片進行拉伸試驗,並將工程量測數據轉換為真應力應變,獲得其機械性質。接著於ANSYS中建立有限元模型,為了降低模擬誤差與提升分析準確度,在實際模擬進行前先藉由模型設定(積分設定方式、元素形狀與沙漏控制)與收斂性分析,篩選出適合本實驗之模型設定與網格。最後依據實驗所獲得之應力-應變曲線建立兩種材料模型,並分別設定邊界條件與此一有限元模型進行拉伸模擬。
    由模擬至大約抗拉強度之結果表明,隱性求解器的BISO模型得到之應力誤差為1.017%,顯性求解器的BISO所得到之應力誤差為1.070%,兩者對照實驗數據皆非常接近。而隱性求解中額外使用了MISO模型,此一應力誤差僅有0.334%,分析更精準。由兩種求解器模擬過程與結果顯示,隱性與顯性求解皆能適用於此一擬靜態拉伸模擬:隱性算法求解快且CAE精準度高;顯性則有更多參數提供個別設定,面對複雜模型或不同受力情況時,能幫助穩定計算過程,減少模擬之誤差。


    In this study, the implicit solver of ANSYS Mechanical and the explicit solver of LS-DYNA were used to perform quasi-static tensile tests. Two material models, Bi-linear (BISO) and Multi-linear (MISO) stress-strain curves, were employed to simulate the mechanical behavior beyond the yield point. Finally, the pros and cons of both methods were compared to each other based on the validation of simulation against experimental data and computational efficiency.
    First of all, the MTS810 was used to perform tensile tests on hot-dip galvanized steel (SGCC) specimens, and the engineering measurement was converted into the true stress-strain to obtain their mechanical properties. Subsequently, a finite element model was established using ANSYS. In order to reduce simulation errors and improve analysis accuracy, the parameters (integration settings, element shapes, and hourglass control) and convergence analysis were performed to select suitable parameters and meshes for this experiment. Finally, two material models were established based on the stress-strain curves obtained from the experiment. They were respectively incorporated into the finite element model with boundary conditions for tensile simulations.
    The results of simulations around the ultimate tensile strength indicate that the implicit solver with the BISO model obtained a stress error of 1.017%, while the explicit solver with the BISO model obtained a stress error of 1.070%. Both results were close to the experimental data. Additionally, the implicit solver with the MISO model was used to achieve a stress error of only 0.334% which provides even more accurate analysis. The simulation results of the two solvers demonstrate that both implicit and explicit solvers are suitable for the quasi-static tensile test. The implicit algorithm offers fast solving speed and high CAE accuracy. In contrast, the explicit solver allows for individual settings for the model also stabilizes the calculation process and reduces simulation errors, especially for complex models or different loading conditions.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 x 第1章 緒論 1 1-1前言 1 1-2 文獻回顧 2 1-3研究動機與目的 3 1-4研究架構 4 第2章 基本原理與理論模式 6 2-1 有限元素法 6 2-1-1 隱性求解器 7 2-1-2 顯性求解器 9 2-1-3 模型設定分析 12 2-1-4 網格收斂性分析 16 2-2 材料非線性 17 2-2-1雙線性各向同性模型(BISO) 18 2-2-2多線段各向同性模型(MISO) 20 第3章 研究方法 21 3-1 製程設備 21 3-2 試片介紹 27 3-3 材料介紹 28 3-4 單軸拉伸試驗 31 第4章 結果與討論 36 4-1 拉伸試驗結果 36 4-2 隱性模擬結果 39 4-3 顯性模擬結果 47 4-4 模擬結果比較 52 第5章 結論與未來展望 54 5-1 結論 54 5-2 未來展望 54 參考文獻 56 附錄A 顯性求解之BISO模型APDL程式碼 58

    [1] F. A. Sabet, S. Koric, A. Idkaidek and I. Jasiuk, "High-performance computing comparison of implicit and explicit nonlinear finite element simulations of trabecular bone." Computer Methods and Programs in Biomedicine, vol. 200,p. 105870, 2021.
    [2] G. Akrivis, M. Crouzeix, and C. Makridakis, "Implicit-explicit multistep finite element methods for nonlinear parabolic problems," Mathematics of Computation, vol. 67, no. 222, pp. 457-477, Apr. 1998.
    [3] J. S. Sun, K. H. Lee and H. P. Lee, "Comparison of implicit and explicit finite element methods for dynamic problems, " Journal of materials processing technology, vol.105, no. 1-2, pp. 110-118, 2000.
    [4] L. E. Lindgren and J. Edberg, "Explicit versus implicit finite element formulation in simulation of rolling," Journal of Materials Processing Technology, vol. 24, pp. 85-94, Jul. 1990.
    [5] H. H. Choi, S. M. Hwang, Y. H. Kang, J. Kim, and B. S. Kang, "Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm," The International Journal of Advanced Manufacturing Technology, vol. 20, pp. 407-413, Apr. 2002.
    [6] 連登輝,"有限元素二維摩擦接觸分析," 碩士, 淡江大學機械與機電工程學系碩士班, 淡江大學, 新北市, 2022.
    [7] 李裕春、时党勇和赵远, ANSYS 11.0/LS-DYNA基础理论与工程实践. 水利水电出版社, 2008.
    [8] 李輝煌, ANSYS 工程分析基礎與觀念. 高立圖書有限公司, 2005.
    [9] 維基百科,自由的百科全書. 牛頓法. Available:
    https://zh.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95
    [10] 周炬、苏金英, Ansys workbench有限元分析实例详解. 人民邮电出版社, 2019.
    [11] 維基百科,自由的百科全書. 歐拉方法. Available: https://zh.wikipedia.org/w/index.php?title=%E6%AC%A7%E6%8B%89%E6%96%B9%E6%B3%95&oldid=76673115
    [12] 劉晉奇、褚晴暉, 有限元素分析與ANSYS的工程應用. 滄海書局, 2006.
    [13] B. Webster, Hourglassing and Shear Locking - What Are They And Why Does It Matter? Available:
    https://www.fidelisfea.com/post/hourglassing-and-shear-locking-what-is-it-and-why-does-it-matter
    [14] 維基百科,自由的百科全書. 應力-應變曲線. Available:
    https://zh.wikipedia.org/w/index.php?title=%E5%BA%94%E5%8A%9B-%E5%BA%94%E5%8F%98%E6%9B%B2%E7%BA%BF&oldid=66546875
    [15] 材料非線性. Available:
    https://baike.baidu.hk/item/%E6%9D%90%E6%96%99%E9%9D%9E%E7%B7%9A%E6%80%A7/2918938
    [16] 王澤鵬、胡仁喜和康士廷, ANSYS 13.0 /LS-DYNA 非線性有限元分析實例指導教程, 機械工業出版社, 2011.
    [17] 國科企業有限公司. MTS810伺服液壓試驗系統使用手冊.
    [18] Axial Extensometers with 25 Mm (1 in.) Gage Length. Available:
    https://www.mts.com/en/products/materials/extensometers/axial-extensometers-25mm-gage
    [19] ASTM International, "Standard test methods for tension testing of metallic materials," ASTM E8/E8M-16a, West Conshohocken, 2016.
    [20] 立祥興業. 熱浸鍍鋅鋼板之製程. Available:
    https://www.lh-steel.com/product-detail-495933.html
    [21] 維基百科,自由的百科全書. 軋製. Available:
    https://zh.wikipedia.org/w/index.php?title=%E8%BD%A7%E5%88%B6&oldid=70349904
    [22] 熱浸鍍鋅, Available:
    https://www.youtube.com/watch?v=v8Qje9eId4E
    [23] MTS引伸计應用與功能索引. Available:
    https://www.mtschina.com/-/media/materials/pdfs/brochures/cn/mts-extensometers-cn-brochure.pdf?as=1
    [24] 行政院國家科學委員會專題研究計畫成果報告.
    子計劃三:膠結不良沈積岩層之邊坡行為. Available: https://ir.nctu.edu.tw/bitstream/11536/91457/1/932211E009002.pdf
    [25] L. Noels, L. Stainier, J. P. Ponthot, and J. Bonini, "Combined implicit-explicit algorithms for non-linear structural dynamics," Revue Européenne des Éléments, vol. 11, no. 5, pp. 565-591, 2002.
    [26] ANSYS Help Viewer(R15).
    [27] JIS G 3302, "JIS G 3302 Hot-dip zinc-coated steel sheet and strip." Japanese Industrial Standard, 2007.

    QR CODE
    :::