跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳文字
Wen-Tzu Chen
論文名稱: 廣義模糊控制-離散系統
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 91
中文關鍵詞: 模糊控制線性矩陣不等式線性分式轉換
外文關鍵詞: Fuzzy control, LMI, LFT
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一種新的模糊模型:線性分式轉換(Linear fractional transformation,LFT)架構的系統,
    並分別設計出二階及三階兩種控制器,研究相同受控系統的控制問題。
    論文中研究一個含有分式項的模糊控制問題,
    以PDC動態輸出回饋控制器來使其達到二次漸進穩定,
    並滿足廣義$H_{2}$性能指標的要求。採用全等轉換(congruence transform)
    的方法來分析與設計控制器,使控制目標滿足廣義$H_{2}$的性能指標。
    因為系統為LFT架構,所以必須考慮LFT架構的比例條件,此限制為求解時重要的條件之一。
    在論文中,我們設計了兩種控制器,經過蕭氏轉換(Schur complement)與全等轉換之後,
    可以分別得兩組控制器的線性矩陣不等式(LMIs),
    來對原本的控制問題求解。我們也考慮因為線性矩陣不等式數目太多,
    易造成求解時的難度增加,
    所獲得的解過於侷限等情形提出簡化線性矩陣不等式(LMIs)數目與增加求解裕度的方法。
    亦嘗試限制$Delta$滿足二次模(2-norm)的架構,探討如此限制下的求解條件。
    最後,使用含有分式項的倒車例子進行電腦的模擬求解。


    No

    第一章 緒論 {1.1}文獻回顧 {1.2}研究動機 {1.3}論文架構 {1.4}符號標記 第二章 模糊線性分式轉換系統 {2.1}系統的數學模型 {2.2}控制器的數學模型 {2.2.1}二階模糊LFT動態輸出回饋控制器 {2.2.2}三階模糊LFT動態輸出回饋控制器 {2.3}閉迴路系統 {2.3.1}二階閉迴路系統 {2.3.2}三階閉迴路系統 第三章 模糊線性分式轉換架構之限制 {3.1}預備定理 {3.2}比例條件 第四章 廣義$H_{2}$性能限制 {4.1}廣義$H_{2}$性能 {4.2}LFT架構性能限制 {4.2.1}二階閉迴路系統之性能限制 {4.2.2}三階閉迴路系統之性能限制 第五章 寬鬆求解條件 {5.1}二階系統 {5.2}三階系統 第六章 電腦模擬倒車例子 {6.1}數學架構 {6.2}模擬結果 第七章 特殊情況 {7.1}數學模型 {7.2}控制目標 {7.3}舉例 第八章 總結與未來研究方向 {8.1}總結 {8.2}未來研究方向 {參考文獻} 附錄A 附註1說明 附錄B Sijk與Wijk各元素 附錄C 倒車例子 {C.1}推導 {C.2}求解增益矩陣 {C.2.1}二階系統增益矩陣 {C.2.2}三階系統增益矩陣

    [1] T. Takagi and M. Sugeno,“Fuzzy identification of systems and
    its applications to modeling and control”, IEEE Trans. Syst.
    Man & Cybern., vol. 15, no. 1, pp. 116-132,Jan. 1985.
    [2] M. Sugeno and G.T. Kang,“Structure identification of fuzzy
    model”, Fuzzy Sets and Systems, vol. 28, pp. 15-33, 1988.
    [3] K. Tanaka and M. Sugeno,“Stability analysis and design of
    fuzzy control systems”, Fuzzy Sets and Systems, vol. 45, pp.
    135-156, 1992.
    [4] K. Tanaka and M. Sano,“Trajectory stabilization of a model car
    via fuzzy control”, Fuzzy Sets and Systems, vol. 70, pp. 155-
    170, 1995.
    [5] H.O. Wang, K. Tanaka, and M.F. Griffin,“An approach to
    fuzzy control of nonlinear systems: stability and design issues”,
    IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14-23, Feb. 1996.
    [6] K. Tanaka, T. Ikeda, and H.O. Wang,“Fuzzy regulators and
    fuzzy observers: relaxed stability conditions and LMI-based designs”,
    IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May 1998.
    [7] S.G. Cao, N.W. Rees, and G. Feng,“Analysis and design of
    fuzzy control systems using dynamic fuzzy global model”, Fuzzy
    Sets and Systems , vol. 75, pp. 47-62, 1995.
    [8] S.G. Cao, N.W. Rees, and G. Feng,“Stability analysis of fuzzy
    control systems”, IEEE Trans. Syst. Man & Cybern.-Part B:
    Cybernetics, vol. 26, no. 1, pp. 201-204, Feb. 1996.
    [9] G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak,“Design of
    fuzzy control systems with guaranteed stability”, Fuzzy Sets and
    Systems, vol. 85, pp. 1-10, 1997.
    [10] S.H. Zak, “Stabilizing fuzzy system models using linear controllers”,
    IEEE Trans. Fuzzy Systems, vol. 7, no. 2, pp. 236-240, Apr. 1999.
    [11] I.R. Petersen,“A stabilization algorithm for a class of uncertain
    linear systems”, Syst. & Contr. Lett., vol. 8, pp. 351-357, 1987.
    [12] D.S. Bernstein,“Robust static and dynamic output-feedback
    stabilization: deterministic and stochastic perspectives”, IEEE
    Trans. Automat. Contr., vol. 32, no. 12, pp. 1076-1084, Dec. 1987.
    [13] D.S. Bernstein,“The optimal projection equations for static and
    dynamic output feedback: the singular case”, IEEE Trans. Automat. Contr.,
    vol. 32, no. 12, pp. 1139-1143, Dec. 1987.
    [14] K. Zhou and P.P. Khargonekar,“ Robust stabilization of linear
    systems with norm-bounded time-varying uncertainty”, Syst. &
    Contr. Lett., vol. 10, pp. 17-20, 1988.
    [15] P.P. Khargonekar, I.R. Petersen, and K. Zhou,Robust stabilization
    of uncertain linear systems: quadratic stabilizability and
    H∞ control theory”, IEEE Trans. Automat. Contr., vol. 35,
    no. 3, pp. 356-361, Mar. 1990.
    [16] L. Xie, M. Fu, and C.E. de Souza, H∞ control and quadratic
    stabilization of systems with parameter uncertainty via output
    feedback”, IEEE Trans. Automat. Contr., vol. 37, no. 8, pp.
    1253-1256, Aug. 1992.
    [17] J.C. Geromel, J. Bernussou, and M.C. de Oliveira,“H2-
    norm optimization with constrained dynamic output feedback
    controllers: decentralized and reliable control”, IEEE Trans.
    Automat. Contr., vol. 44, no. 7, pp. 1449-1454, July 1999.
    [18] J. Li, D. Niemann, H. O. Wang, and K. Tanaka,“Parallel distributed
    compensation for Takagi-Sugeno fuzzy models: multiobjective controller
    design”, Proc. of American Control Conf., San Diego CA., June 1999,
    pp. 1832-1836.
    [19] C. Scherer, P. Gahinet, and M. Chilali,“Multiobjective output-
    feedback control via LMI optimization”, IEEE Trans. Automat.
    Contr., vol. 42, no. 7, pp. 896-911, July 1997.
    [20] H.J. Kang, C. Kwon, H. Lee, and M. Park,“Robust stability
    analysis and design method for the fuzzy feedback linearization
    regulator”, IEEE Trans. Fuzzy Systems, vol. 6, no. 4, pp. 464-
    472, Nov. 1998.
    [21] K. Kiriakidis, A. Grivas, and A. Tzes,“Quadratic stability
    analysis of the Takagi-Sugeno fuzzy model”, Fuzzy Sets and Systems,
    vol. 98, pp. 1-14, 1998.
    [22] M.C.M. Teixeira and S.H. Zak,“Stabilizing controller design for
    uncertain nonlinear systems using fuzzy models”, IEEE Trans.
    Fuzzy Systems, vol. 7, no. 2, pp. 133-142, Apr. 1999.
    [23] K. Kiriakidis,“Robust stabilization of the Takagi-Sugeno fuzzy
    model via bilinear matrix inequalities”, IEEE Trans. Fuzzy Systems,
    vol. 9, no. 2, pp. 269-277, Apr. 2001.
    [24] H.J. Lee, J.B. Park, and G. Chen,“Robust fuzzy control of
    nonlinear systems with parametric uncertainties”, IEEE Trans.
    Fuzzy Systems, vol. 9, no. 2, pp. 369-379, Apr. 2001.
    [25] K. Tanaka, T. Ikeda, and H.O. Wang,“Robust stabilization of a
    class of uncertain nonlinear systems via fuzzy control: quadratic
    stabilizability, H∞ control theory, and linear matrix inequalities”,
    IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 1-13, Feb. 1996.
    [26] K.Tanaka, T.Hori, and H.O. Wang,“New robust and optimal
    designs for Takagi-Sugeno fuzzy control systems”, in Proc. of
    1999 IEEE Int''l Conf. on Control Appl. , Kohala Coast, Hawaii,
    1999, pp. 415-420.
    [27] A. Jadbabaie, M. Jamshidi, and A. Titli,“Guaranteed-cost
    design of continuous-time Takagi-Sugeno fuzzy controller via
    linear matrix inequalities”, in Proc. of IEEE World Congress on
    Computational Intell. , Anchorage, AK., May 1998, vol. 1, pp. 268-273.
    [28] S.K. Hong and R. Langari,“Synthesis of an LMI-based fuzzy
    control system with guaranteed optimal H∞ performance”, in
    Proc. of IEEE World Congress on Computational Intell. ,
    Anchorage, AK., May 1998, vol. 1, pp. 422-427.
    [29] Y.Y. Cao and P.M. Frank,“Robust H∞ disturbance attenuation
    for a class of uncertain discrete-time fuzzy systems”, IEEE Trans.
    Fuzzy Systems , vol. 8, no. 4, pp. 406-415, Aug. 2000.
    [30] K.R. Lee, E.T. Jeung, and H.B. Park,“Robust fuzzy H∞ control
    of uncertain nonlinear systems via state feedback: an LMI
    approach”, Fuzzy Sets and Systems , vol. 120, pp. 123-134, 2001.
    [31] B.S. Chen, C.S. Tseng, and H.J. Uang,“Mixed H2/H∞ fuzzy
    output feedback control design for nonlinear dynamic systems:
    an LMI approach”, IEEE Trans. Fuzzy Systems , vol. 8, no. 3,
    pp. 249-265, June 2000.
    [32] K. Zhou, Essentials of Robust Control , Prentice-Hall, Upper
    Saddle River, NJ., 1998.
    [33] H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto,“New
    fuzzy control model and dynamic output feedback parallel
    distributed compensation”, IEEE Trans. Fuzzy Systems , 2002,
    submitted for publication.
    [34] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A
    Linear Matrix Inequality Approach , John Wiley & Sons, Inc.,
    New York, NY, 2001.
    [35] G. Feng and J. Ma,“Quadratic stabilization of uncertain
    discrete-time fuzzy dynamic system”, IEEE Trans. Circuits and
    Systems-I: Fundamental theory and Applications , vol. 48, no.
    11, pp. 1137-1344, 2001.
    [36] D.C.W. Ramos and P.L.D. Peres,“A less conservative LMI
    condition for the robust stability of discrete-time uncertain
    systems”, Syst. & Contr. Lett. , , no. 43, pp. 371-378, 2001.
    [37] J.C. Lo and W.T. Chen,“Generalized H2 control for LFT fuzzy
    systems”, in Proc. 2003 Conf. Auto. Contr. , , TW, Mar. 2003,
    vol. 1, pp. 275-278.

    QR CODE
    :::