| 研究生: |
林家宏 Chia-Hung Lin |
|---|---|
| 論文名稱: |
飛灰調質熔渣成份對卜作嵐反應特性之影響 Characteristic study on the pozzolanic reactivity of slag derived from component modification of MSW fly ash |
| 指導教授: |
王鯤生
Kuen-Sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 184 |
| 中文關鍵詞: | 焚化飛灰 、熔融處理 、鹽基度 、熔渣 、卜作嵐反應 |
| 外文關鍵詞: | slag, MSW fly ash, melting process, basicity, pozzolanic characteristics |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究係針對都市垃圾焚化飛灰(旋風集塵灰與洗滌灰的混合物)難以單獨熔融之特性,利用SiO2、Al2O3及P2O5等進行鹽基度調整以降低其熔流溫度,主要分為三種系列(S系、A系及P系)以不同配比混合進行調質熔融處理,將調質熔渣製成不同取代量之熔渣水泥漿體。本研究除建立都市垃圾焚化飛灰物化特性與調質熔渣之基本特性外,亦探討不同養護齡期下熔渣水泥漿體之工程材料特性及卜作嵐反應行為,包括抗壓強度、卜作嵐活性指數、水化程度、水化產物種類及微結構觀察等。
實驗結果顯示,各系調質熔渣CaO、SiO2、Al2O3及P2O5,其含量分別為29~35%、36~45%、9~20%及2~13%,大致符合ASTM C989 高爐熟料規範之要求,具有延長水泥澆鑄工作時間之特性。對90天齡期抗壓強度發展而言,取代量10、20%之A系熔渣水泥漿體可超越OPC 1~14 MPa;而P系熔渣水泥漿體則可與OPC之抗壓強度發展相當(差值<5 MPa)。而卜作嵐活性指數分佈於78-106%之範圍內,其中P系熔渣之活性指數為98-106%,具有較佳之反應性,而A系為81-95%次之,最低為S系熔渣79-80%,其卜作嵐活性發展較不明顯。由XRD、 DTA及FTIR之物種分析得知,熔渣水泥漿體與OPC之主要水化產物皆為CH、C-S-H及C-A-H。由NMR分析發現,隨齡期之增加,單矽酸根逐漸轉變為高濃縮矽結構的C-S-H 膠體,聚矽陰離子長度至齡期90天皆大於純水泥漿體,顯示水化晚期熔渣之卜作嵐反應有助於漿體內部矽酸鹽類之聚合。由SEM觀察得知,熔渣漿體會產生六角層片狀CH水化物、球形針狀 C-S-H 膠體及部分鈣釩石與單硫型鋁酸鹽,同時隨卜作嵐反應持續進行而逐漸成長相互接觸交織成網狀結構,能有效減少孔隙並使孔隙緻密化,進而提升漿體強度。綜合上述結果,調整鹽基度後進行熔融處理可將都市垃圾焚化飛灰無害化,且所得熔渣具有材料化之潛力。
Abstract
MSW incinerator fly ash, comprisedof mixed cyclone ash and lime-reactant ash is characterized by its high melting point and is thus difficult to melt effectively and economically, without modification of its components. This study investigated the effects of the modification of the fly ash''s basicity on the pozzolanic characteristics of the resultant melts. The modification was made by adding SiO2 to bring the basicity closer to unity; subsequent additions of Al2O3 and P2O5 to the previous modifications were also evaluated. These modifications resulted in three types of fly ash, referred to as the S-, A-, and P- modified series, respectively. All the resultant slag samples were pulverized to prepare cement pastes with various portions of the cement being replaced. The pozzolanic characteristics were evaluated at various curing ages by examining the pozzolanic activity, hydration degree,the hydration products and their microstructure, as well as the engineering properties of the pastes.
The results indicate that all the slag samples resulted from the modified fly ash contained CaO(9~35w/w%), SiO2(36~45w/w%), Al2O3(9~20w/w%), and P2O5(2~13w/w%), respectively; all met the specification of ASTM C989 for blast furnace slag, and showed properties that would delay the setting time of the resultant mortars. The pozzolanic activity for all the tested slag samples ranged from 78% to 106%.The P-modified series slag showed a greater activity (98~106%) than did the A-modified series slag(81~95%), whereas the activity developed in the S-modified series samples was less distinctive(79~80%), as compared to that of OPC.As to the compressive strength at 90-days, the A-modified series samples ,with a 10% and 20% cement-replacement, outperformed the OPC samples by 1~14 MPa, whereas the P-modified series exhibited compressive strength development close to that of OPC, by less than 5 MPa.
XRD, DTA, and FTIR speciation analyses indicated that the main hydrated products of all tested samples included calcium hydroxide(CH), calcium silicate hydrate (C-S-H), and calcium aluminate hydrates(C-A-H). Moreover, the NMR results indicate that the number of Si linear polysilicate anions in the C-S-H gel increased with increasing age, and outperformed that of OPC at 90 days, suggesting that pozzolanic reactions in the slag contributed to the later formation of calcium silicate hydrate (C-S-H). This was also indicated by the SEM analysis, from the formation of hexagonal sheets of CH hydrates, round and needle-surfaced C-S-H gels, ettringite (Ca6Al2(SO4)3.32H2O), and monosulfate. These products grew to intersecting to form a network structure, which increased the distribution of the finer pores, eliminated the porosity, and thus increased the compressive strength of the pastes.The results of this study demonstrated that MSW fly ash could be melted at a lower temperature when its basicity was modified, thus producing the targeted type of slag, with pozzolanic characteristics close to or outperforming those of OPC.
參考文獻
Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M., “Stabilization/solidification of MSWI residues from facilities with different air pollution control systems. Durability of matrices versus carbonation”, Waste Management, Vol. 21, pp. 313-323, 2001.
Arjunan, P., Michael, R. and Della M. Roy, “Silfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and concrete research, Vol. 29, No. 8, pp.1305-1311, 1999.
Barbieri, L.,Bonamartini, A. C. and Lancellotti, I., “Alkaline and alkaline-earth silicate glass and glass-ceramics from municipal and industrial wastes”, Journal of the European Ceramics Society, Vol. 20, pp. 2477-2483, 2000a.
Cabrera, J G; Al-Hasan, A S , “Performance properties of concrete repair materials”, Construction and Building Materials,Vol.11, Issue:5-6, pp.283-290,1997.
Cheriaf, M., C. Rocha, and J. Pera, “Pozzolanic Properties of Pulverized Coal Combustion Botton Ash”, Cement and Concrete Research, Vol. 29, No. 1,pp. 1387-1391,1999.
Dron. R. , “Experimental and Theoretical study of the CaO-Al2O3-SiO2-H2O system”, Cement,Concrete,and Aggregates,Vol .4,No.2, pp.156-160, 1975.
EER, “Updated Guidance on Metals Interpolation and Extrapolation for Hazardous Waste Combustors”, Draft Report. Prepared for EPA Office of Solid, 1996a.
EER, “Updated Guidance on Metals Surrogates for Hazardous Waste Combustors”, Draft Report. Prepared for EPA Office of Solid, 1996b.
Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash”, Environmental Science & Technology, Vol. 29, No. 3, p.629, 1995.
Endo, H., Nagayoshi, Y. and Suzuki, K., “Production of glass ceramics from sewage sludge”, Water Science and Technology, Vol. 36, pp.235-241, 1997.
Fan, Yueming; Yin, Suhong; Wen, Zhiyun; Zhong, Jingyu, “Activation of fly ash and its effects on cement properties”, Cement and Concrete Research,Vol.29, Issue: 4, pp.467-472,1999.
Frearson, J. P. H., and J. M. Uren,“Investigations of a Ground Granulated Blast Furace Slag Containing Merwinitic Crystallization”, ACI Journal, SP-91, pp.1401-1421, 1986.
F. Keil, Slag cements, Proceedings of the Third International Symposium on the Chemistry of Cements, London, Cement and Concrete Association, pp. 530– 571,1952.
Fisher, G. L., Chang, D. P. Y., and Brummer, M., “Fly Ash Collected from Electrostatic Precipitators: Microcrystalline Structures and Mystery of the Spheres”, Science, 192, pp.553, 1976.
Griffin, S.G., Hill, R.G., “Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content ”,Biomaterials ,Vol. 21, Issue: 4, pp. 399-403, 2000.
Gardner, K. H. Characterization of Leachates from Municipal Incinerator Ash Materials, Thesis, Clarkson University, 1991.
Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Vol.88, No. 3, p.294, 1991.
He, C., E. Makovicky, and B. Osback, “Thermal Treatment and Pozzolanic Activity of Sepiolite”, Applied Clay Science, Vol. 10, No. 6, pp.341-349,1996.
Hjelmar, Ole, “Disposal strategies for municipal solid waste incineration residues”, Journal of Hazardous Materials 47, pp.347-350, 1996
Jean. Pera., Assefa. Wolde, and M. Chabannet, “Hydraulic Activity of Slags Obtained by Vitrification of Wastes,” ACI Materials Journal,Vol.93, No.6,pp.132-142 (1996).
Johansson, Karin; Larsson, Cecilia; Antzutkin, Oleg N. , “Kinetics of the hydration reactions in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1575-1581,1999.
Kosson, D.S., Sloot, H.A., and Eighmy, T.T., “An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues”, Journal of Hazardous Materials, Vol.47, No. 2-3, pp.43-75, 1996.
Lin, K.L., Wang, K.S., Tzeng, B.Y., Wang, N.F., Lin, C.Y. , “ Effects of Al2O3 on the hydration activity of MSWI fly ash slag”, Cement and Concrete Research ,Vol. 34, No. 4, pp. 587-592 , 2004.
Lin, K.L.,Wang, K.S., Tzeng, B. Y., Lin, C. Y., “The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash.” Waste Management, Vol. 24, pp. 199-205, 2004.
Makoto Hattori, Eiji Shoto, “Solidification of heavy metal-containing sludges by heating with silicate, Toxic and hazardous waste disposal”, Ann Arbor Science, Vol. 3, pp.141-154, 1981.
Mathews, A. P, “Chemical Equilibrium Analysis of Lead and Beryllium Speciation in Hazardous Waste Incinerators”, Proceedings of the Second International Symposium on Metals Speciation, Separation and Recovery, II, pp.73-83, 1989.
Mehta , P. K. , “Pozzolanic and Cementitious By-Products in Concrete-Another Look. ”,Fly ash , Silica Fume ,Slag ,and Natural Pozzolans in Concrete, ACI SP-901 , Vol. 1 ,Norway,1989.
McCarter, W. J. and D. Tran, “Monitoring Pozzolanic Activity by Direct Activation with Calcium Hydroxide”, Construction and Building Materials,Vol. 10, No. 3, pp. 179-184,1996.
Monzo, J., J. Paya, M. V. Borrachero, and E. Peris-Mora, “Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cements With Different Tricalcium Aluminate Content”, Cement and Concrete Research, Vol. 29, No. 4, pp. 87-94,1999.
Murakami, T., Ishida, T., Sasabe K., Sasaki, K. and Harada, S., “Characteristics of Melting Process for Sewage Sludge”, Water Science and Technology, 23(10/12), 2019-2028, 1991a.
Murakami, T., Sasabe, K., and Kawashima, T., “Estimation of Energy Saving for Melting Process on Sewage Sludge”, Water Science and Technology, 23(10/12), pp. 2011-2018, 1991b.
Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers, Inc., 1991.
Paya, J., J. Monzo, M. V. Borrachero, E. Peris, and E. Gonzalez-Lopez, “Mechanical Treatment of Fly Ash. Part Ⅲ :Studies on Strength Development of Ground Fly Ash (GFA)-cement mortars”, Cement and Concrete Research, Vol. 27, No. 9, pp. 1365-1377,1997a.
Pacyna, J. M., and Ottar, B., “Control and Metal Emissions From Waste Incinerators” ,Control and Fate of Atmospheric Trace Metals, pp.33-45,1989.
Plowaman, C. and J. G. Cabbrra, “Mechanism and Kinetics of Hydration of C3A and C4AF, Extracted from Cement”, Cement and Concrete Research, Vol. 14, No. 2, pp.238-248, 1984.
Pu, X., “Investigation on pozzolanic effect of mineral additives in cement and concrete by specific strength index”, Cement and Concrete Research, Vol. 29, No. 6, pp.951-955, 1999.
Sakai, S. and Hiraoka, M., “Municipal solid waste incinerator residue recycling by thermal processes”, Waste Management, Vol. 20, No. 2-3, pp.249-258, 2000.
Sakai, S., “Municipal solid waste management in Japan”, Waste Management, 6(5-6), pp.395-405, 1996.
Sanchez de Rojas, M. I. and M.Frias, “The Pozzolanic Activity of Different Materials, Its Influence on the Hydration Heat in Mortars”, Cement and Concrete Research, Vol. 26, No. 2, pp. 203-213,1995.
Taylor, H.F.W., “Cement chemistry”, Thomas Telford, 1997.
Tan, Kefeng; Pu, Xincheng, “Strengthening effects of finely ground fly ash, granulated blast furnace slag and their combination”,Cement and Concrete Research, Vol.28, Issue:12, pp.1819-1825, 1998.
Takaoka, Masaki; Takeda, Nobuo; Miura, Satoshi, “The behaviour of heavy metals and phosphorus in an ash melting process”, Water Science and Technology ,Vol. 36, Issue: 11, pp. 275-282, 1997.
Tashiro, C., K. Ikeda, and Y. Inoue, “Evaluation of Pozzolanic Activity by the Electric Resistance Measurement Method”, Cement and Concrete Research, Vol. 24, No. 6, pp. 1133-1139,1994.
Tchobanoglous, G., Theisen, M., and Vigil, S., “Integrated Solid Waste Management Engineering Principles and Management Issues”, McGraw-Hill, Inc., Singapore, l993.
Wasserman, R. and A. Bentur, “Effect of Lightweight Fly Ash Aggregate Microstructure on the Strength of Concrete”, Cement and Concrete Research, Vol. 27, No. 4, pp. 525-537,1995.
Wey, M. Y., Degreve, J., Van Rompay, P., “Simulation of a Slagging Incineration Process”, Computers & Chemical Engineering, 15(5), 297-304, 1991.
Wiles, C.C., “Municipal solid waste combustion ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol.47, pp.325-344, 1996.
Young, J.F., Mindess, S., Gray, R. J. and Bentur, A., “The science and technology of civil engineering materials”, Prentice Hall, 1997.
王和源,「爐石製成及添加方式對水泥強度的影響」,國立台灣工業技術學院營建技術組碩士論文,1985。
王鯤生,張旭彰,“垃圾焚化灰渣熔融處理操作特性之研究“,中華民國環境工程學會第七屆廢棄物處理技術研討會,1992
王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分布即溶出特性之探討」,第十三屆廢棄物處理技術研討會論文集,高雄市,pp.463-469,1998。
于惇德,「以礦物摻料固化重金屬污泥之固化效果及機理研究」,國立中央大學土木工程研究所碩士論文,1989。
池原洋一與鈴木邦雄等,「清掃工廠のっぅィゥシシュの抵抗爐による熔融處理技術時について」,都市清掃,第39卷,第153號,1986。
村上忠弘與石田貴榮,「污泥熔融に係ゐ指標の檢討」,下水道協會誌,Vol. 26,No. 300,1989。
村上忠弘、石田貴榮、鈴木和美、角田幸二,「污泥熔に係ゐ指標の檢討」,下水道協會誌,Vol. 2,No.300,pp.32-46,1985。
李建中、李釗、何啟華與鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
江慧嫻,「工業廢水污泥/淨水污泥共同熔融處理之基礎性及資源化研究」,碩士論文,國立台灣大學環工所,台北(2001)。
江康鈺、王鯤生,「污泥熔融處理及資源再利用技術」,工業污染防治,Vol.64,pp.156-188,1997。
沈得縣,「高爐熟料與飛灰之卜作嵐反應機理及對水泥漿體巨微觀性質影響之研究」,博士論文,國立台灣工業技術學院,台北(1991)。
林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程學研究所,中壢(2002)。
林利國,「稻殼灰性質與混凝土材料上之利用」,碩士論文,國立台灣工業技術學院,台北(1989)。
林秋國,「水泥與水泥/不飽和聚酯複合體固定化鉻之機制」,博士論文,國立交通大學環境工程研究所博士論文,新竹(1997)。
洪聰民,「垃圾焚化灰渣利用之研發建制及推廣計畫(第三年) -都市垃圾焚化爐飛灰電漿熔融處理之評估」,原子能委員會核能研究所,2000。
倪文等,「礦物材料學導論」,科學出版社,pp.33-34,北京,1998。
陳清泉、陳振川、袁宏績與詹穎雯,「爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究」,營建研究中心,1987。
陳新旺,「含飛灰水泥漿體/砂漿力學性質與行為之研究」,國立台灣科技大學營建工程技術學系碩士論文,台北,1992。
張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1991)。
張祉祥,「都市垃圾焚化底灰燒結資源化之研究」,碩士論文,國立中央大學環境工程學研究所,中壢(1999)。
黃兆龍,「高爐熟料及飛灰材料在混凝土工程上之應用」,高爐石與飛灰資源在混凝土工程上應用研討會,財團法人台灣營建研究中心,1986。
黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
黃兆龍,「高等混凝土技術」,國立台灣工業技術學院工程技術研究所講義,台北(1985)。
黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程研究所,中壢(2000)。
詹炯淵,「垃圾焚化飛灰管理對策之研究」,碩士論文,國立臺灣大學環境工程學研究所,台北(2000)。
詹孟贇、李釗、歐陽嶠暉,「都市下水污泥熔渣細骨材利用可行性之研究」,第十屆廢棄物處理技術研討會論文集,pp.54-63,1995。
魏敬楨,「飛灰與爐石含量對高性能混凝土工作性及強度的影響」,國立中興大學土木工程學系碩士論文,台中,1995。
龔龍山,「高強度波索蘭混凝土之基本工程性質研究」,國立交通大學土木工程研究所碩士論文,新竹,1990。
鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,淡江水資源及環境工程研究所碩士論文,1995。
謝素蘭,「以高壓及高溫燒結技術鑄造水泥、粘土及飛灰混合料組件之研究」,國立台灣工業技術學院工程技術研究所營建工程技術組碩士論文,台北,1990。
葉宗智,「垃圾焚化飛灰粒徑對燒結效果之研究」,碩士論文,國立中央大學環境工程研究所,中壢(1997)。
奧野長晴、山田昭捷、吉田憲一,「下水污泥ケキ一を原料 す熔融技術の開發」,下水道協會誌,24(276),pp.75-88,1987。
關一洋,「旋回溶融炉—千葉市」,下水道協會誌,26(307),pp.41-46,1989。
大嶋吉雄、增田隆司,「下水污泥溶融スラグの有效利用」,下水道協會誌,26(307),pp.21-29,1989。
行政院環保署,「環保統計資料」,http://www.epa.gov.tw/,2003。