跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李琦雅
Zuhairini Rizqiyah
論文名稱: 對 Kaluza-Klein 粒子作為星系團中潛在冷暗物質候選者的約束
Constraints on the Kaluza-Klein Particles as Potential Cold Dark Matter Candidates in Galaxy Clusters
指導教授: 黃崇源
Chorng-Yuan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 102
中文關鍵詞: Kaluza-Klein冷暗物質星系團同步加速器發射冷卻功能
外文關鍵詞: Kaluza-Klien, Cold Dark Matter, Galaxy Clusters, Synchrotron Emission, Cooling Function
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究計算了星系團中暗物質湮滅的無線電通量密度。該研究假設這些星團中的暗物質由卡魯扎-克萊因粒子 (KKDM) 組成。 KKDM 指的是在宇宙額外維度中運動的粒子,是冷暗物質候選者之一。 KKDM 的自湮滅會導致相對論性電子-正電子對,這會在具有高磁場的星系團中產生顯著的同步輻射射電輻射。為了對這些漫射無線電發射設置下限約束,我們分析了產生費米子對的通道中的通量密度,例如 e+e-、μ+μ- 和 τ+τ-。該研究發現,如果 KKDM 是這些星團中的主要暗物質,那麼富星團(例如 Abell 119 和 Abell 2029)可能會從 KKDM 湮滅中產生可檢測的漫射無線電發射。這項研究為了解星系團中 KKDM 的特性提供了寶貴的見解,並進一步了解了宇宙學和暗物質搜索的意義。


    This study calculates the radio flux density from dark matter annihilations in galaxy clusters. The research assumes that the dark matter in these clusters is composed of Kaluza-Klein particles (KKDM). KKDM refers to particles moving in the universal extra dimensions and is one of the cold dark matter candidates. Self-annihilation of KKDM could result in relativistic electron-positron pairs, which can generate significant synchrotron radio emission in galaxy clusters with high magnetic fields. To set the lower limit constraints on these diffuse radio emissions, we analyzed the flux density in channels producing fermion pairs, such as e+e-, μ+μ-, and τ+τ-. The study found that a rich cluster, such as the Abell 119 and Abell 2029 might create possible detectable diffuse radio emission from KKDM annihilation if the KKDM is the main dark matter in these clusters. This research offers valuable insights into the properties of KKDM in galaxy clusters and provides further understanding of the implications of cosmology and dark matter searches.

    電子論文授權書 Authorisation of the Electronic Thesis i 指導教授推薦書 Recommendation Letter from the Thesis Advisor iii 口試委員審定書 Verification from the Oral Examination Committee v 英文摘要 Abstract in English vii 中文摘要 Abstract in Chinese viii 誌謝 Acknowledgements ix List of Figures xiii List of Tables xv 1 Introduction 1 2 Kaluza-Klein particles and Characteristics of clusters 5 2.1 Kaluza-Klein dark matter (KKDM) annihilations . . . . . . . . . . . . . . 5 2.2 Characteristics of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Synchrotron Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 Source Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.2 Cooling Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.3 Radio Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 NVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6 VLSSr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.7 Free Parameters Scan of Minimal Universal Extra Dimensions (MUEDs) . 15 3 Results and Discussions 17 3.1 Abell 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Abell 2029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Abell 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Other Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Influence of magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Summary 39 A MadDM 47 B Upper limits constraints of target galaxy clusters 51 C Free scan parameters MUED (Minimal Universal Extra dimensions) of target galaxy clusters 61 D Flux density on target clusters 67 E Fitting parameter on target clusters 77

    [1] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, jul 2014.
    [2] F. Ambrogi, C. Arina, M. Backovi´c, J. Heisig, F. Maltoni, L. Mantani, O. Mattelaer, and G. Mohlabeng. MadDM v.3.0: A comprehensive tool for dark matter studies. Physics of the Dark Universe, 24:100249, mar 2019.
    [3] V. S. Berezinsky, P. Blasi, and V. S. Ptuskin. Clusters of Galaxies as Storage Room for Cosmic Rays. ApJ, 487(2):529–535, Oct. 1997.
    [4] G. Bertone and T. M. P. Tait. A new era in the search for dark matter. Nature, 562(7725):51–56, 2018.
    [5] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, Apr. 2010.
    [6] A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag, and G. B. Taylor. The Coma cluster magnetic field from Faraday rotation measures. A&A, 513:A30, 2010.
    [7] I. Boriev. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of planck’s constant. Journal of Physics: Conference Series, 996:012017, 03 2018.
    [8] U. G. Briel, J. P. Henry, M. Arnaud, and D. Neumann. The Coma Cluster of Galaxies Observed by XMM-Newton. In S. Borgani, M. Mezzetti, and R. Valdarnini, editors, Tracing Cosmic Evolution with Galaxy Clusters, volume 268 of Astronomical Society of the Pacific Conference Series, page 203, Jan. 2002.
    [9] C. L. Carilli and G. B. Taylor. Cluster Magnetic Fields. ARA&A, 40:319–348, Jan. 2002.
    [10] Y. Chen, T. H. Reiprich, H. B¨ohringer, Y. Ikebe, and Y. Y. Zhang. Statistics of X-ray observables for the cooling-core and non-cooling core galaxy clusters. A&A, 466(3):805–812, May 2007.
    [11] H.-C. Cheng, K. T. Matchev, and M. Schmaltz. Bosonic supersymmetry? getting fooled at the cern lhc. Phys. Rev. D, 66:056006, Sep 2002.
    [12] M. Cirelli, G. Corcella, A. Hektor, G. H¨utsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia. PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2011(03):051–051, mar 2011.
    [13] A. S. Cohen, W. M. Lane, W. D. Cotton, N. E. Kassim, T. J. W. Lazio, R. A. Perley, J. J. Condon, and W. C. Erickson. The vla low-frequency sky survey. The Astronomical Journal, 134(3):1245, jul 2007.
    [14] S. Colafrancesco, S. Profumo, and P. Ullio. Multi-frequency analysis of neutralino dark matter annihilations in the coma cluster. A&A, 455(1):21 43, jul 2006.
    [15] J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick. The NRAO VLA Sky Survey. AJ, 115(5):1693 1716, May 1998.
    [16] C. J. Conselice and I. Gallagher, John S. Galaxy aggregates in the Coma cluster. MNRAS.
    17] J. M. Cornell, S. Profumo, and W. Shepherd. Dark matter in minimal universal extra dimensions with a stable vacuum and the “right” higgs boson. Phys. Rev. D, 89:056005, Mar 2014.
    [18] W. B. Dapp, S. Basu, and M. W. Kunz. Bridging the gap: disk formation in the Class 0 phase with ambipolar diffusion and Ohmic dissipation. A&A, 541:A35, May 2012.
    [19] A. Datta, K. Kong, and K. T. Matchev. Discrimination of supersymmetry and universal extra dimensions at hadron colliders. Phys. Rev. D, 72:096006, Nov 2005.
    [20] N. Deutschmann, T. Flacke, and J. S. Kim. Current LHC constraints on minimal universal extra dimensions. Physics Letters B, 771:515–520, aug 2017.
    [21] K. Dolag, S. Schindler, F. Govoni, and L. Feretti. Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters. A&A, 378:777–786, Nov. 2001.
    [22] D. Farnsworth, L. Rudnick, S. Brown, and G. Brunetti. Discovery of megaparsecscale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope. The Astrophysical Journal, 79(2):189, dec 2013.
    [23] R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, and M. Zaro. The complete NLO corrections to dijet hadroproduction. JHEP, 2017(4), apr 2017.
    [24] G. Ghisellini, P. W. Guilbert, and R. Svensson. The Synchrotron Boiler. ApJ, 334:L5, Nov. 1988.
    [25] S. Ghizzardi, S. De Grandi, and S. Molendi. Metal distribution in sloshing galaxy clusters: the case of A496. A&A, 570:A117, Oct. 2014.
    [26] G. Giovannini, L. Feretti, T. Venturi, K. T. Kim, and P. P. Kronberg. The Halo Radio Source Coma C and the Origin of Halo Sources. ApJ, 406:399, Apr. 1993.
    [27] A. M. Groener, D. M. Goldberg, and M. Sereno. The galaxy cluster concentrationmass scaling relation. MNRAS, 455(1):892–919, Jan. 2016.
    [28] A. Hayakawa, T. Furusho, N. Y. Yamasaki, M. Ishida, and T. Ohashi. Inhomogeneity in the hot intracluster medium of abell 1060 observed with chandra. PASJ, 56(5):743–752, oct 2004.
    [29] T. KALUZA. On the unification problem in physics. IJMPD, 27(14):1870001, oct 2018.
    [30] C.-Y. Kiew, C.-Y. Hwang, and Z. Zainal Abibin. Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters. MNRAS, 467(3):2924–2933, 02 2017.
    [31] O. Klein. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Z. Phys., 37:895–906, 1926.
    [32] W. M. Lane, W. D. Cotton, J. F. Helmboldt, and N. E. Kassim. VLSS redux: Software improvements applied to the very large array low-frequency sky survey. Radio Science, 47, jun 2012.
    [33] W. M. Lane, W. D. Cotton, S. van Velzen, T. E. Clarke, N. E. Kassim, J. F. Helmboldt, T. J. W. Lazio, and A. S. Cohen. The Very Large Array Low-frequency Sky Survey Redux (VLSSr). MNRAS, 440(1):327–338, May 2014.
    [34] F. Massaro, D. E. Harris, E. Liuzzo, M. Orienti, R. Paladino, A. Paggi, G. R. Tremblay, B. J. Wilkes, J. Kuraszkiewicz, S. A. Baum, and C. P. O’Dea. The chandra survey of extragalactic sources in the 3cr catalog: X-ray emission from nuclei, jets, and hotspots in the chandra archival observations. ApJ, 220, sep 2015.
    [35] O. Mattelaer. On the maximal use of monte carlo samples: re-weighting events at NLO accuracy. EPJ C, dec 2016.
    [36] H. Mo, F. C. van den Bosch, and S. White. Galaxy Formation and Evolution. 2010.
    [37] J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. ApJ, 490(2), 1997.
    38] V. C. Rubin and J. Ford, W. Kent. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. ApJ, 159:379, Feb. 1970.
    [39] L. Rudnick and J. A. Lemmerman. An Objective Survey of Mpc-scale Radio Emission in 0.03 ¡ z ¡ 0.3 Bright X-ray Clusters. ApJ, 697(2):1341–1357, June 2009.
    [40] C. L. Sarazin. The energy spectrum of primary cosmic-ray electrons in clusters of galaxies and inverse compton emission. ApJ.
    [41] G. Servant and T. M. Tait. Is the lightest kaluza–klein particle a viable dark matter candidate? Nuclear Physics B, 650(1-2):391–419, feb 2003.
    [42] G. Servant and T. M. P. Tait. Elastic scattering and direct detection of kaluza-klein dark matter. Nuclear Physics B, dec 2002.
    [43] E. Storm, T. E. Jeltema, S. Profumo, and L. Rudnick. Constraints on dark matter annihilation in clusters of galaxies from diffuse radio emission. ApJ, 768(2):106, apr 2013.
    [44] V. Vacca, M. Murgia, F. Govoni, L. Feretti, G. Giovannini, R. A. Perley, and G. B. Taylor. The intracluster magnetic field power spectrum in A2199. A&A, 540:A38, Apr. 2012.
    [45] D. Volpi, L. Del Zanna, E. Amato, and N. Bucciantini. Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. A&A, 485(2):337–349, July 2008.
    [46] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127, Jan. 1933

    QR CODE
    :::