| 研究生: |
黃旭毅 Hsu-yi Huang |
|---|---|
| 論文名稱: |
以螢光粉光譜變異偵測溫度之研究 Study of Emission Properties with Phosphor Temperature Prediction |
| 指導教授: |
楊宗勳
Tsung-hsun Yang 孫慶成 Ching-cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 螢光粉 、光譜 、溫度 |
| 外文關鍵詞: | Phosphor, Spectrum, Temperature |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用螢光粉受熱之光譜特性變化來對螢光粉層的溫度進行預測。實驗以噴塗式白光LED為量測樣品,紀錄樣品於受熱過程中之溫度、光色、光強度與頻譜等資訊,並針對每種加熱條件下之輻射頻譜進行函數擬合。我們採用光譜儀量測之數據來建立資料庫,比較各波長藍光晶片與不同色溫變數下之螢光光譜特徵,並選取擁有一致性之波長區間進行函數擬合,以便找出螢光粉輻射光譜與螢光粉溫度之對應關係。
In this thesis, we predict temperature of phosphor with fitting parameters of emission spectra, and investigate distribution of phosphor’s temperature with multiple package types. At the same time, we also analyze angular correlated color temperature deviation in this case. In the experiment, we choose pcW-LED of conformal coating type, and the severe high temperature condition was applied to the whole measurement duration, with recording the information of temperature, light intensity, spectrum and chromaticity. In addition, we utilize the parameter fitting of different spectra for each condition. Due to the heat source is varied with injection different currents, we can establish the database for spectral information. And we will compare two variables with different blue peak wavelengths and different phosphor’s thicknesses. Finally, in order to find the correspondence between the spectral characteristics and phosphor’s temperature, we select consistent region of wavelength to fit.
[1] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[2] N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
[3] C. P. Kuo, R. M. Fletcher, T. D. Ostenkowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[4] Wiki, https://zh.wikipedia.org/wiki/%E4%B8%AD%E6%9D%91%E4%
BF%AE%E4%BA%8C.
[5] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[6] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160-175 (2007).
[7] Cree,http://www.cree.com/News-and-Events/Cree-News/Press-Releases
/2014/March/ 300LPW-LED-barrier.
[8] J. K. Kim, and E.F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
[9] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[10] J. Y. Tsao, “Solid-state lighting: Lamp targets and implications for the semiconductor chip,” IEEE Circuits and Devices 20, 28-37 (2004).
[11] 國立中央大學光電科學與工程學系,光電科技概論,初版,五南圖書出版股份有限公司,台北市,中華民國九十七年。
[12] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[13] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L.W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[14] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[15] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[16] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1–3 (2009).
[17] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
[18] I. Moreno, D. Bermúdez, and M. Avendaño-Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).
[19] T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang , and S. Y. Chen, “Study of Temperature Distribution Within pc-WLEDs Using the Remote-Dome Phosphor Package,” IEEE Photon. J. 7, 1-11 (2015).
[20] L. Li, C. Yuan, R. Hu, H. Zheng, and X. Luo, “Study on the effect of the phosphor distribution on the phosphor layer temperature in light emitting diodes by lattice Boltzmann method,” IEEE Electronic Packaging Technology 15, 671-675 (2014).
[21] A. Y. Gonzalez, C. C. Pilgrim, P. Y. Sollazzo, A. L. Heyes, J. P. Nicholls, and F. Beyrau, “Temperature Sensing inside Thermal Barrier Coatings using Phosphor Thermometry,” ISA Instrumentation Symposium 60, 1-6 (2014).
[22] S. W. Allison, M. R. Cates, B. W. Noel, and G. T. Gillies, “Monitoring Permanent-Magnet Motor Heating with Phosphor Thermometry,” IEEE Instrumentation and Measurement 37, 637-641 (1988).
[23] A. L. Heyes, S. Seefeldt, and J. P. Feist, “Two-colour phosphor thermometry for surface temperature measurement,” Science 38, 257-265 (2006).
[24] P. K. Brown and G. Wald, “Visual pigments in single rods and cones of human retina,” Science 144, 45-52 (1964).
[25] J. Guild, “The colorimetric properties of the spectrum,” Proc. R. Soc. A 230, 149-187 (1932).
[26] W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1929).
[27] J. Guild, “The colorimetric properties of the spectrum,” Proc. R. Soc. A 230, 149-187 (1932).
[28] W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1929).
[29] The Colour & Vision Research Laboratory, http://www.cvrl.org/.
[30] International Commission on Illumination, CIE 15: Technical Report:Colorimetry, 3rd ed. (CIE, Vienna, 2004).
[31] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, New York, 1981).
[32] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
[33] 陳隆建,發光二極體之原理與製程,全華圖書股份有限公司,台北縣, 中華民國一百年。
[34] D. A. Neamen, Microelectronics Circuit Analysis and Design (McGraw-Hill, New York, 2007).
[35] 孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[36] E. F. Schubert, Light-Emitting Diode (Cambridge University Press, Cambridge, 2003).
[37] 劉如熹、劉宇恒,發光二極體用氧氮化螢光粉介紹,全華科技圖書股份有限公司,台北市,中華民國九十五年。
[38] A. Jaboski, “Efficiency of anti-stokes fluorescence in dyes,” Nature 131,839-840 (1933).
[39] 大田 登,色彩工程學-理論與應用,全華科技圖書公司,台灣,民國九十七年。
[40] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
[41] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
[42] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
[43] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
[44] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I. Intensity and Lifetime Measurements on Undoped and Ce‐Doped Y3Al5O12,” J. Electrochem. Soc. 126, 1213-1220 (1979).
[45] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors II. A Comparative Study of Ce3+, Eu3+, Tb3+, and Gd3+ in Y3Al5O12,” J. Electrochem. Soc. 126, 1221-1228 (1979).
[46] M. Batentschuk, B. Schmitt, J. Schneider, and A. Winnacker, “Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds),” Proc. MRS 560, 215 (1999).
[47] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater. 21, 2077-2084 (2009).
[48] K. Ivanovskikh, J. Ogiegło, A. Zych, C. Ronda, and A. Meijerink, “Luminescence Temperature Quenching for Ce3+ and Pr3+ df Emission in YAG and LuAG,” ECS Journal of Solid State Science and Technology 2, R3148-R3152 (2013).
[49] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, “Temperature-dependent emission spectra of M2SiO4: Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs,” Science 133, 455-448 (2005).
[50] A. K. Lunia, S. K. Patra, S. Kumar, S. Singh, S. Pal, and C. Dhanavantri, “Theoretical analysis of blue to white down conversion for light-emitting diode light with yttrium aluminum garnet phosphor,” SPIE Journal of Photonics for Energy 4, 043596-1-11 (2014).
[51] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature Quenching of Yellow Ce3+ Luminescence in YAG: Ce,” Chem. Mater. 21, 2077-2084 (2009).
[52] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physics 34, 149-154 (1967).
[53] I. U. Perera, and N. Narendran, “Understanding Heat Dissipation of a Remote Phosphor Layer in an LED System,” IEEE Itherm 14, 186-192 (2014).
[54] 雷射及光電熱整合實驗室,國立中央大學光電系照明與顯示所。
[55] 周虹宇,發光二極體發光光譜特性之模型建立與維持穩定,國立中央大學光電科學研究所博士論文,中華民國一百年。
[56] 紀詔元,高功率LED光電熱色特性整合模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[57] 唐健碩,高功率LED光電熱色動態行為特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[58] 鄭翰翔,白光LED加速老化之光輻射特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[59] K. Jang, “Excitation-Dependent Emissive Properties of Silicate Phosphor for Light Converted LEDs,” J. Korean Phys. Soc. 55, 1587 (2009).
[60] L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials 3, 2172-2195 (2010).
[61] J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+,” J. Phys. Chem. A 116, 8464-8474 (2012).
[62] Y. W. Jung, B. Lee, S. P. Singh, and K. S. Sohn, “Particle swarm optimization assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3: Eu2+ phosphors,” Opt. Express 18, 17805-17818 (2010).
[63] S. W. Jeon, J. H. Noh, K. H. Kim, W. H. Kim, C. Yun, S. B. Song, and J. P. Kim, “Improvement of phosphor modeling based on the absorption of Stokes shifted light by a phosphor,” Opt. Express 22, A1237-A1242 (2014).