| 研究生: |
鄧永門 Yung-men Teng |
|---|---|
| 論文名稱: |
溶膠凝膠法製備氧化鐵與摻鋅氧化鐵薄膜應用於光電化學產氫電極之研究 |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 光電化學 、氧化鐵薄膜 、旋轉塗佈 、溶膠凝膠 |
| 外文關鍵詞: | Photoelectrochemical, Iron oxide thin film, Spin coating, Sol-gel |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用溶膠凝膠旋轉塗佈法製備應用於光電化學產氫系統中的半導體氧化鐵薄膜電極,並嘗試摻雜鋅至薄膜之中,以期製作出高光電流與高光電轉換效率的薄膜電極。α相氧化鐵擁有2.3 eV的低能隙,能夠有效的吸收波長小於550 nm的光線,此波長之太陽光約佔太陽光能量中的30 % 。氧化物於電解液中擁有較高的耐腐蝕性,能長久使用符合經濟效益。而溶膠凝膠法能降低目前光電薄膜的高製作成本。本研究嘗試改變熱處理溫度、氣氛與膜厚,並利用光譜儀、XRD、SEM與恆電位儀探討所製備氧化鐵光電薄膜之結構、光學與光電流性質。在實驗中成功製備出表面平整之α相氧化鐵薄膜電極,當厚度為300 nm時,其光吸收率於入射光波長550 nm時達50 %、500 nm時達75 %,在太陽光模擬器的照射下出現0.44 mA/cm2的光暗電流差。摻鋅氧化鐵部份發現鋅摻雜量上升會提高反射率,使光吸收率下降,但鋅摻雜量增至10 at% 時表面產生環狀結構,其產生之光電流較低鋅摻雜電極高。本研究更嘗試改變薄膜厚度,以找出最佳覆膜厚度參數,發現多次覆膜與熱處理的試片雖然使結晶性與光吸收率上升,卻未使光電流上升。
Semiconducting thin films of iron oxide and iron oxide doped zinc as the electrode for PEC were investigated by a sol-gel spin coating method. The α-Fe2O3 was low band gap material about 2.3 eV and it can absorb light which wavelength is lower than 550 nm and this part of light is about 30% of total solar energy. Oxide was high anticorrosive in electrolyte and has long life for using. Sol-gel method was inexpensive manufacturing which can lower the high price of photoelectric films. In this study, the manufacturing controls temperature and atmosphere in heat treatment and the film thickness and studying in crystal structure, morphology, optic properties and photocurrent density.
The iron oxide thin films synthesized by sol-gel spin coating show flat morphology and α phase structure. Light absorption of the films is 50 % in 550 nm, 75 % in 500 nm when the film thickness is 300 nm. And the films show best photocurrent density about 0.44 mA/cm2. In Zn-doped experiment, the reflection rate of films increases with zinc doping rate and decreases the light absorption. But when zinc doping rate increases to 10 %, the circularity morphology appears and improves the photocurrent density. In the study, we tried to change the film thickness and found that the manufacturing with coating and heat treatment several times will improve the crystallization and light absorption, but the films do not show circularity morphology and induce the low photocurrent density.
1. The Economist Technology, Quarterly, March 25, p. 29 (2001).
2. M. Momirlan, T. N. Veziroglu, “Current status of hydrogen energy,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 141-179 (2002)
3. D. R. Gaskell, Introduction to The Thermodynamics of Materials, Taylor and Francis Group, New York, p. 37 (2003)
4. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” International Journal of Hydrogen Energy, vol. 27(10), pp. 991-1022 (2002)
5. R.M. Cornell and U. Schwertmann, The Iron Oxide: Structure, Properties, Reactions, Occurrence and Uses, VCH publishers (1996)
6. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press (1984)
7. K. L. hardee and A. J. Bard, “Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions,” Journal of The Electrochemical Society, vol. 124, pp. 215-224 (1977)
8. S.S. Kulkarni, C.D. Lokhande, “Structural, optical, electrical and dielectrical properties of electrosynthesized nanocrystalline iron oxide thin films,” Materials Chemistry and Physics, vol. 82, pp.151-156 (2003)
9. J. K. Leland and A. J. Bard, “Photochemistry of colloidal semiconducting iron oxlde polymorphs,” Journal of Physical Chemistry, vol. 91, pp. 5076-5083 (1987)
10. 白木靖寬、吉田貞史,薄膜工程學,全華科技圖書股份有限公司,pp. 1-7 - 1-31 (2002)
11. P. Sawunyama, A. Yasumori and K. Okada, “The nature of multilayer TiO2-based photocatalytic films prepared by a sol-gel process,” Materials Research Bulletin, vol. 33(5), pp. 795–801 (1998)
12. C. Jeffrey Brinker and G. W. Scherer, Sol-Gel Science, Academic Pres Inc. (1990)
13. A. Fujishima, K. Honda, Nature, “Electrochemical photocatalysis of water at a semiconductor electrode,” vol. 238, pp.37-38 (1972)
14. G. Zhao, H. Kozuka, H. Lin, M. Takahashi, T. Yoko, “Preparation and photoelectrochemical properties of Ti1−xVxO2 solid solution thin film photoelectrodes with gradient bandgap,” Thin Solid Films, vol. 340, p.125 (1999).
15. C.J. Tseng, C.L. Tseng, L.W. Hong, J.C. Chen “Heat transfer analysis of a photoelectrochemical hydrogen generation reactor,” First Asian Symposium on Computational Heat Transfer and Fluid Flow (2007)
16. K. Lee, N.H. Lee, S.H. Shin, H.G. Lee, S.J. Kima, “Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols,” Materials Science and Engineering B, vol. 129, p. 109 (2006)
17. S. Sen, S. Mahanty, S. Roy, O. Heintz, S. Bourgeois, D. Chaumont, “Investigation on sol–gel synthesized Ag-doped TiO2 cermet thin films,” Thin Solid Films, vol. 474, p.245 (2005)
18. V. M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy, vol. 78, pp.581-592 (2005)
19. J. H. Kennedy and K. W. Frese, Jr., “Photooxidation of water at α–Fe2O3 electrodes,” Journal of The Electrochemical Society, vol. 125, No. 5, pp709-714 (1978)
20. J. H. Kennedy and K. W. Frese, Jr., “Flatband potentials and donor densities of polycrystalline alpha-Fe2O3 determined from Mott-Schottky plots,” Journal of The Electrochemical Society, vol. 125, No. 5, pp. 723-726 (1978)
21. L. Armelao, G. Granozzi, E. Tondello, P. Colombo, G. Principi, P.P. Lottici, G. Antonioli, “Nanocrystalline alpha-Fe2O3 sol-gel thin films: a microstructural study,” Journal of Non-Crystalline Solids, vol. 192 & 193, pp. 435-438 (1995)
22. L. Armelao, A. Armigliato, R. Bozio, P. Colombo, “Sol-gel processing of nanocrystalline haematite thin films,” Journal of Materials Research, vol. 12, No. 6, pp. 1441-1444 (1997)
23. S. U. M. Khan and J. Akikusa, “Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes,” Journal of Physical Chemistry B, vol. 103, pp. 7184-7189 (1999)
24. W. B. Ingler Jr., J. P. Baltrus, S. U. M. Khan, “Photoresponse of p-Type zinc-doped iron(III) oxide thin films,” Journal of the American Chemical Society, vol. 126, pp. 10238-10239 (2004)
25. W. B. Ingler Jr., S. U. M. Khan, “Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes inwater splitting,” International Journal of Hydrogen Energy, vol. 30, pp. 821 – 827 (2005)
26. W.B. Ingler Jr, S. U. M. Khan, “Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination,” Thin Solid Films, vol. 461, pp. 301– 308 (2004)
27. S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, V. R. Satsangi, “Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water,” Current Science, vol. 91, No. 8 (2006)
28. C. J. Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, and J. Augustynski, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes,” Journal of Physical Chemistry B, vol. 109, pp. 13685-13692 (2005)
29. A. Kay, I. Cesar, M. Gr?tzel, “New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films” Journal of the American Chemical Society, vol. 128, pp. 15714-15721 (2006)
30. 王天佑,製備氧化鐵薄膜以及摻雜鈦離子和鍺離子的氧化鐵薄膜應用於光電化學電池;國立台灣大學碩士論文;台北 (2006)
31. 顏珮珍,摻雜PZT微粉的SiO2光波導材料製作與特性研究;國立清華大學碩士論文;新竹 p. 16 (2002)
32. Robert E. Reed-Hill, Physical Metallurgy Principles, Ch.8 (1994)
33. Avila-Garcia A., Carbajal-Franco G., Tiburcio-Silver A., Barrera-Calva E., Andrade-Ibarra E, “α−Fe2O3 films grown by the spin-on sol-gel deposition method,” Revista Mexicana De Fisica, vol. 49, no. 3, pp. 219-223.
34. 陳力俊等,材料電子顯微鏡學,國家實驗研究院儀器科技研究中心,pp. 314-318 (1994)
35. 宋國輝,太陽光電產氫反應器中MnxTi1-xO2薄膜電極之研究;國立中央大學碩士論文;桃園 p. 39 (2007)
36. S.C. Yu et al., Journal of The Geological Society of China, vol. 42, p. 349 (1999)
37. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, P. R. J. Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide,” Journal of the Chemical Society, Faraday Transactions I, vol. 79, pp. 2027-2041 (1983)