| 研究生: |
吳筑曄 Chu-Yeh Wu |
|---|---|
| 論文名稱: |
高極性分子在表面自組裝單分子層之結構排列及表面性質之研究 |
| 指導教授: |
陶雨台
陳銘洲 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 自組裝單分子薄膜 、亞磷酸 、有機發光二極體 、反射式紅外線光譜 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室過去的研究顯示具有高分子偶極性的CF3Bn2CH2SH和F5BnCH2SH分子以某特定比例混合在金表面形成的單分子層,其吸附密度比單一成分形成之單分子層高並提升功函數。因此本實驗中,我們延續之前在金上的結果,期望在鋁及ITO上能藉由利用不同長度間隔基的分子將會互相排斥的極性官能基錯開,或透過缺電子的苯環和多電子的苯環互相吸引或減低排斥,以反射紅外光譜、XPS、電化學、功函數等研究分子在表面上排列與鍵結的情形。結果顯示使用相同官能基的亞磷酸分子CF3Bn2PA和F5BnPA修飾在鋁的表面時,並沒能因此造成分子間距離靠近而提升功函數,推測因為亞磷酸基團體積較龐大,需要更強的吸引力才能使分子靠近。因此另外合成4FPyPA,相較於F5BnPA苯環更缺電子,與CF3Bn2PA組成混合自組裝分子薄膜時,確實能使吸附密度上升,然而功函數並未因此有提升跡象,可能原因在於4FPyPA吸附在鋁上的功函數與CF3Bn2PA落差太大,因此並未對提升功函數有幫助。
當使用偶極矩比CF3Bn2PA更大的NO2BnPA時,因為傾斜角以及吸附密度較低的關係,功函數約與F5BnPA、4FPyPA相同,經組成混合自組裝分子薄膜後,在特定混合比例下可以造成功函數提升,然而吸附密度並沒有增加,考量膜厚推測是NO2BnPA受到缺電苯環的吸引更直立導致。
將上述的各種混合單層分子組合應用於ITO基板修飾並製成純電洞元件與標準OLED元件,比較功函數與電流密度及發光效率關係。結果顯示當F5BnPA、4FPyPA與NO2BnPA搭配時,隨NO2BnPA比例增加,功函數與電流密度隨之下降,然而發光效率卻逐漸遞增,推測是此型OLED屬於為電洞注入多過電子注入者,持續增加功函數造成更多電洞注入,多餘的電洞被浪費因此電流效率下降。與CF3Bn2PA搭配之混合單層則趨勢相反,功函數增加,電流效率也增加。此現象有待更多的實驗去解釋。
Previous research in our lab found that mixed monolayer formed from the mixture of dipolar CF3Bn2CH2SH and F5BnCH2SH molecules on Au resulted in higher binding density than that formed from single component solution and the work function obtained from mixed layer modification was higher than that from single compound monolayer. In this thesis the mixed monolayers of related phosphonic acids with different molecular length or aromatic rings of different electrostatic characters on aluminium and ITO surface were studied by reflection absorption IR, XPS, electrochemistry, and work function, in the hope to achieve higher work function by mixed monolayer modification. The results showed that the work function was not raised by mixed monolayers of CF3Bn2PA and F5BnPA. Possibly because the phosphonic acid group is bulkier so that the inetermolecular interaction is not sensitive to the charge character. Mixed monolayers of more polar 4FPyPA and CF3Bn2PA can indeed increase the binding density but not the work function.
Monolayer of more polar NO2BnPA molecule gave similar work function as F5BnPA and 4FPyPA, probably due to the tilt angle and lower surface density. When mixed SAM was formed with NO2BnPA, the work function was slightly improved in certain ratio, however, the surface density was not. Based on the thickness measurement, it is proposed that NO2BnPA monolayer becomes more perpendicular due to the attraction of electron-poor aromatic ring.
Standard organic light-emitting diodes and hole-only devices with mixed monolayer-modified ITO as the anode were prepared. Correlations of current density with work function and luminous efficiency were observed. The devices with higher ratio NO2BnPA gave higher luminous efficiency with lower work function and current density. It is suggested that this device structure has excessive hole charges over the electron charges. With increasingly higher work function, more holes are injected, and more holes are wasted without recombination, resulting decreasing efficiency. However, the device with mixed SAMs of CF3Bn2PA and F5BnPA, a reversed trend was observed. Higher current density led to higher luminous efficiency. The cause is not clear.
1. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
2. Möbius, D.; Kuhn, H., Monolayer Assemblies of Dyes to Study the Role of Thermal Collisions in Energy Transfer. Israel Journal of Chemistry 1979, 18 (3‐4), 375-384.
3. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
4. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102 (1), 92-98.
5. Fenter, P.; Eberhardt, A.; Eisenberger, P., Self-Assembly of <em>n</em>-Alkyl Thiols as Disulfides on Au(111). Science 1994, 266 (5188), 1216-1218.
6. Delamarche, E.; Michel, B.; Kang, H.; Gerber, C., Thermal Stability of Self-Assembled Monolayers. Langmuir 1994, 10 (11), 4103-4108.
7. Fenter, P.; Eisenberger, P.; Li, J.; Camillone, N.; Bernasek, S.; Scoles, G.; Ramanarayanan, T. A.; Liang, K. S., Structure of octadecyl thiol self-assembled on the silver(111) surface: an incommensurate monolayer. Langmuir 1991, 7 (10), 2013-2016.
8. Dhirani, A.; Hines, M. A.; Fisher, A. J.; Ismail, O.; Guyot-Sionnest, P., Structure of Self-Assembled Decanethiol on Ag(111): A Molecular Resolution Scanning Tunneling Microscopy Study. Langmuir 1995, 11 (7), 2609-2614.
9. Keller, H.; Simak, P.; Schrepp, W.; Dembowski, J., Surface chemistry of thiols on copper: an efficient way of producing multilayers. Thin Solid Films 1994, 244 (1), 799-805.
10. Itoh, M.; Nishihara, H.; Aramaki, K., Preparation and Evaluation of Two‐Dimensional Polymer Films by Chemical Modification of an Alkanethiol Self‐Assembled Monolayer for Protection of Copper Against Corrosion. Journal of The Electrochemical Society 1995, 142 (11), 3696-3704.
11. Biebuyck, H. A.; Bain, C. D.; Whitesides, G. M., Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols. Langmuir 1994, 10 (6), 1825-1831.
12. Schönherr, H.; Ringsdorf, H., Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 1. Synthesis of Disulfides and Investigation of Monolayer Properties. Langmuir 1996, 12 (16), 3891-3897.
13. Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M., Heterogeneous catalysis on platinum and self-assembled monolayers on metal and metal oxide surfaces. In Pure and Applied Chemistry, 1991; Vol. 63, p 821.
14. Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G., Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxide of Metals. Langmuir 1995, 11 (3), 813-824.
15. Allara, D. L.; Nuzzo, R. G., Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1985, 1 (1), 52-66.
16. LAIBINIS, P. E.; HICKMAN, J. J.; WRIGHTON, M. S.; WHITESIDES, G. M., Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina. Science 1989, 245 (4920), 845-847.
17. Tao, Y. T.; Lee, M. T.; Chang, S. C., Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties. Journal of the American Chemical Society 1993, 115 (21), 9547-9555.
18. Decher, G., An Introduction to Ultrathin Organic Films from Langmuir‐Blodgett to Self‐Assembly. Von A. Ulman. Academic Press, New York, 1991. XIII, 442 S., geb. $ 65.00. — ISBN 0‐12‐708230‐1. Angewandte Chemie 1992, 104 (4), 498-499.
19. Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E., Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society 1993, 115 (21), 9389-9401.
20. Allara, D. L., Critical issues in applications of self-assembled monolayers. Biosensors and Bioelectronics 1995, 10 (9), 771-783.
21. Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G., Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. Journal of the American Chemical Society 1990, 112 (2), 570-579.
22. Arramel; nbsp; Castellanos-Gomez, A.; Wees, B. J. v., Band Gap Opening of Graphene by Noncovalent ¦Ð-¦Ð Interaction with Porphyrins. Graphene 2013, Vol.02No.03, 7.
23. Ogawa, H.; Chihara, T.; Taya, K., Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina. Journal of the American Chemical Society 1985, 107 (5), 1365-1369.
24. Schlotter, N. E.; Porter, M. D.; Bright, T. B.; Allara, D. L., Formation and structure of a spontaneously adsorbed monolayer of arachidic on silver. Chemical Physics Letters 1986, 132 (1), 93-98.
25. Tao, Y. T., Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society 1993, 115 (10), 4350-4358.
26. McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614.
27. Barness, Y.; Gershevitz, O.; Sekar, M.; Sukenik, C. N., Functionalized Silanes for the Preparation of Siloxane-Anchored Monolayers. Langmuir 2000, 16 (1), 247-251.
28. Srivastava, R.; Iwasa, N.; Fujita, S. i.; Arai, M., Synthesis of Nanocrystalline MFI‐Zeolites with Intracrystal Mesopores and Their Application in Fine Chemical Synthesis Involving Large Molecules. Chemistry – A European Journal 2008, 14 (31), 9507-9511.
29. Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D., Self assembled monolayers on silicon for molecular electronics. Analytica Chimica Acta 2006, 568 (1), 84-108.
30. Mutin, P. H.; Guerrero, G.; Vioux, A., Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry 2005, 15 (35-36), 3761-3768.
31. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1170.
32. Paramonov, P. B.; Paniagua, S. A.; Hotchkiss, P. J.; Jones, S. C.; Armstrong, N. R.; Marder, S. R.; Brédas, J.-L., Theoretical Characterization of the Indium Tin Oxide Surface and of Its Binding Sites for Adsorption of Phosphonic Acid Monolayers. Chemistry of Materials 2008, 20 (16), 5131-5133.
33. Brodard-Severac, F.; Guerrero, G.; Maquet, J.; Florian, P.; Gervais, C.; Mutin, P. H., High-Field 17O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania. Chemistry of Materials 2008, 20 (16), 5191-5196.
34. Hotchkiss, P. J.; Jones, S. C.; Paniagua, S. A.; Sharma, A.; Kippelen, B.; Armstrong, N. R.; Marder, S. R., The Modification of Indium Tin Oxide with Phosphonic Acids: Mechanism of Binding, Tuning of Surface Properties, and Potential for Use in Organic Electronic Applications. Accounts of Chemical Research 2012, 45 (3), 337-346.
35. Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P., Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Physical Review B 1996, 54 (20), R14321-R14324.
36. Crispin, X.; Geskin, V.; Crispin, A.; Cornil, J.; Lazzaroni, R.; Salaneck, W. R.; Brédas, J.-L., Characterization of the Interface Dipole at Organic/ Metal Interfaces. Journal of the American Chemical Society 2002, 124 (27), 8131-8141.
37. Cho, C.-P.; Tao, Y.-T., Tuning of Metal Work Function with Organic Carboxylates and Its Application in Top-Emitting Electroluminescent Devices. Langmuir 2007, 23 (13), 7090-7095.
38. Wu, K.-Y.; Tao, Y.-T.; Huang, H.-W., Tuning hole injection and charge recombination with self-assembled monolayer on silver anode in top-emitting organic light-emitting diodes. Applied Physics Letters 2007, 90 (24), 241104.
39. Heimel, G.; Romaner, L.; Zojer, E.; Bredas, J.-L., The Interface Energetics of Self-Assembled Monolayers on Metals. Accounts of Chemical Research 2008, 41 (6), 721-729.
40. Romaner, L.; Heimel, G.; Ambrosch‐Draxl, C.; Zojer, E., Correction: The Dielectric Constant of Self‐Assembled Monolayers. Advanced Functional Materials 2011, 21 (18), 3406-3406.
41. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society 1989, 111 (1), 321-335.
42. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C., Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chemical Society Reviews 2010, 39 (5), 1805-1834.
43. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
44. Abraham, F.; Ford, W. E.; Scholz, F.; Nelles, G.; Sandford, G.; von Wrochem, F., Surface Energy and Work Function Control of AlOx/Al Surfaces by Fluorinated Benzylphosphonic Acids. ACS Applied Materials & Interfaces 2016, 8 (18), 11857-11867.
45. Narasimham, N. A.; Nielsen, J. R.; Theimer, R., Vibrational Spectra of Fluorinated Aromatics. XIII. Benzotrifluoride. The Journal of Chemical Physics 1957, 27 (3), 740-745.
46. Sang, L.; Mudalige, A.; Sigdel, A. K.; Giordano, A. J.; Marder, S. R.; Berry, J. J.; Pemberton, J. E., PM-IRRAS Determination of Molecular Orientation of Phosphonic Acid Self-Assembled Monolayers on Indium Zinc Oxide. Langmuir 2015, 31 (20), 5603-5613.
47. Koh, S. E.; McDonald, K. D.; Holt, D. H.; Dulcey, C. S.; Chaney, J. A.; Pehrsson, P. E., Phenylphosphonic Acid Functionalization of Indium Tin Oxide: Surface Chemistry and Work Functions. Langmuir 2006, 22 (14), 6249-6255.
48. Regina, L.; Gotthard, S.; Evelin, J.; P., A. H. J., Infrared Spectra of Alkylphosphonic Acid Bound to Aluminium Surfaces. Macromolecular Symposia 2007, 254 (1), 248-253.
49. Kumar, M.; Srivastava, M.; Yadav, R. A., Vibrational studies of benzene, pyridine, pyridine-N-oxide and their cations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 111, 242-251.
50. Moon, J. H.; Kim, K.-J.; Kang, T.-H.; Kim, B.; Kang, H.; Park, J. W., Selective Cleavage of the Nitro Group from a Nitrophenyl Monolayer by Synchrotron Soft X-ray. Langmuir 1998, 14 (20), 5673-5675.
51. Yu, S.-Y.; Huang, D.-C.; Chen, Y.-L.; Wu, K.-Y.; Tao, Y.-T., Approaching Charge Balance in Organic Light-Emitting Diodes by Tuning Charge Injection Barriers with Mixed Monolayers. Langmuir 2012, 28 (1), 424-430.
52. Yu, S.-Y.; Chang, J.-H.; Wang, P.-S.; Wu, C.-I.; Tao, Y.-T., Effect of ITO Surface Modification on the OLED Device Lifetime. Langmuir 2014, 30 (25), 7369-7376.