跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林明龍
Ming-Long Lin
論文名稱: 基於Model-Agnostic Meta-Learning方法的深度神經網路識別多變量製程中的異常來源
Identifying the Sources of Out-of-control Signals in Multivariate Process Using Deep Neural Networks Based on Model-Agnostic Meta-Learning Approach
指導教授: 葉英傑
Ying-Chieh Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 多變量製程多變量管制圖變數選擇深度神經網路Model-Agnostic Meta-Learning
外文關鍵詞: Multivariate Processes, Multivariate Control Charts, Variable Selection, Deep Neural Networks, Model-Agnostic Meta-Learning
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代製造業中,多變量管制圖已被廣泛應用於檢測製程異常。然而,它卻無法直接辨識異常來源,這是製程監控中的一大挑戰。因此,本研究旨在發展一套有效且即時的方法,以應對製造過程中的維度災難,同時識別多變量製程中的異常來源,提高監控的準確性和效率。
    資料前處理採用B4-Broken-stick變數選擇方法,有效降低多維度數據的複雜性。本研究使用基於Model-Agnostic Meta-Learning方法的深度神經網路進行異常來源的分類。實驗結果顯示,本研究提出的 MAML of DNNs 模型透過少量樣本學習,快速適應新任務,在不同偏移情況下能夠有效處理所有異常狀況並保持良好的準確率。與 MLP 模型相比,MAML of DNNs 模型在準確率和訓練時間上均表現較佳,證實其在識別多變量製程異常來源方面更具效率和效果。將MAML of DNNs模型應用於生產過程中,可以即時辨識異常來源,幫助相關領域人員更有效率和高效地進行品質改善工作。


    In modern manufacturing, multivariate control charts have been widely used to detect process anomalies. However, they cannot directly identify the source of out-of-control signals, posing a significant challenge in process monitoring. This study aims to develop an effective and real-time method to address the curse of dimensionality in manufacturing processes while identifying the source of out-of-control signals in multivariate processes, thereby improving monitoring accuracy and efficiency.
    This study employs the B4-Broken-stick variable selection method to effectively reduce the complexity of high-dimensional data. We propose using a deep neural network based on Model-Agnostic Meta-Learning (MAML) to classify the sources of out-of-control signals. Experimental results show that the proposed MAML of DNNs model learns from a small number of samples and quickly adapts to new tasks, effectively handling all anomaly conditions and maintaining high accuracy under various shift scenarios. Compared to the MLP model, the MAML of DNNs model performs better in both accuracy and training time, demonstrating its efficiency and effectiveness in identifying the sources of out-of-control signals in multivariate processes. Applying the MAML of DNNs model in the production process enables real-time identification of the sources of out-of-control signals, assisting personnel in related fields to conduct quality improvement work more efficiently and effectively.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章、緒論 1 1.1研究背景與動機 1 1.2研究目的 1 1.3研究範圍與假設 2 1.4論文架構 2 第二章、文獻探討 4 2.1統計製程管制 4 2.1.1多變量統計製程管制 5 2.1.2 Hotelling T2管制圖 7 2.2識別異常來源相關文獻 9 2.2.1傳統統計方法 9 2.2.2機器學習方法 10 2.3主成分分析 (Principal Component Analysis, PCA) 11 2.3.1 B4-Broken-stick方法 11 2.4神經網路與深度學習 12 2.4.1神經網路 (Neural Networks, NNs) 13 2.4.2深度學習 (Deep Learning, DL) 14 2.4.3神經網路在統計製程管制上之應用 15 2.5元學習 (Meta-Learning) 16 2.5.1 Model-Agnostic Meta-Learning (MAML) 18 第三章、研究方法 19 3.1研究架構 19 3.2原始資料 20 3.3使用B4-Broken-stick方法進行變數選擇 21 3.4生成隨機多變量過程 23 3.4.1異常資料 23 3.5模型架構 24 3.5.1輸入特徵向量 24 3.5.2隱藏層 25 3.5.3輸出層 25 3.6 Model-Agnostic Meta-Learning of Deep Neural Networks 25 3.6.1問題及符號定義 26 3.6.2 MAML演算法 26 3.6.3應用於多標籤二元分類 28 第四章、實驗結果與分析 30 4.1資料前處理 30 4.2實驗設計 30 4.2.1元訓練集和元測試集之資料與樣本數 30 4.2.2最佳化模型配置 31 4.3實驗分析與評估 32 4.3.1分類結果 32 4.3.2模型比較 34 4.3.3文獻案例之模型比較 36 第五章、結論與未來研究方向 40 參考文獻 41

    [1] Abdi, H., & L. J. Williams. "Principal component analysis." Wiley Interdisciplinary Reviews: Computational Statistics 2.4, 2010, 433-459.
    [2] Aslam, M., A. Saghir, & L. Ahmad. Introduction to Statistical Process Control. John Wiley & Sons, 2020.
    [3] Bersimis, S., S. Psarakis, & J. Panaretos. "Multivariate statistical process control charts: an overview." Quality and Reliability Engineering International 23.5, 2007, 517-543.
    [4] Chen, L. H., & T. Y. Wang. "Artificial neural networks to classify mean shifts from multivariate χ2 chart signals." Computers & Industrial Engineering 47.2-3, 2004, 195-205.
    [5] Cheng, C. S. "A multi-layer neural network model for detecting changes in the process mean." Computers & Industrial Engineering 28.1, 1995, 51-61.
    [6] Cheng, C. S., & H. T. Lee. "Diagnosing the variance shifts signal in multivariate process control using ensemble classifiers." Journal of the Chinese Institute of Engineers 39.1, 2016, 64-73.
    [7] Diren, D. D., S. Boran, & I. Cil. "Integration of machine learning techniques and control charts in multivariate processes.", 2020.
    [8] Doganaksoy, N., F. W. Faltin, & W. T. Tucker. "Identification of out of control quality characteristics in a multivariate manufacturing environment."
    Communications in Statistics-Theory and Methods 20.9, 1991, 2775-2790.
    [9] Finn, C., P. Abbeel, & S. Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International Conference on Machine Learning. PMLR, 2017, 1126-1135.

    [10] Frontier, S. "Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd́le du bâton brisé." Journal of Experimental Marine Biology and Ecology 25.1, 1976, 67-75.
    [11] Guh, R. S., & Y. R. Shiue. "An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts." Computers & Industrial Engineering 55.2, 2008, 475-493.
    [12] Guo, Y., & K. J. Dooley. "Identification of change structure in statistical process control." The International Journal of Production Research 30.7, 1992, 1655-1669.
    [13] Hawkins, D. M. "Multivariate quality control based on regression-adiusted variables." Technometrics 33.1, 1991, 61-75.
    [14] Hawkins, D. M. "Regression adjustment for variables in multivariate quality control." Journal of Quality Technology 25.3, 1993, 170-182.
    [15] Hayter, A. J., & K. L. Tsui. "Identification and quantification in multivariate quality control problems." Journal of Quality Technology 26.3, 1994, 197-208.
    [16] Jackson, D. A. "Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches." Ecology 74.8, 1993, 2204-2214.
    [17] Jackson, J. E. "Multivariate quality control." Communications in Statistics-Theory and Methods 14.11, 1985, 2657-2688.
    [18] Jolliffe, I. T. "Discarding variables in a principal component analysis. I: Artificial data." Journal of the Royal Statistical Society Series C: Applied Statistics 21.2, 1972, 160-173.
    [19] King, J. R., & D. A. Jackson. "Variable selection in large environmental data sets using principal components analysis." Environmetrics: The Official Journal of the International Environmetrics Society 10.1, 1999, 67-77.

    [20] Krenker, A., J. Bešter, & A. Kos. "Introduction to the artificial neural networks."
    Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 2011, 1-18.
    [21] Mason, R. L., N. D. Tracy, & J. C. Young. "Decomposition of T 2 for multivariate control chart interpretation." Journal of Quality Technology 27.2, 1995, 99-108.
    [22] Montgomery, D. C. Introduction to Statistical Quality Control. John Wiley & Sons, 2019.
    [23] Murphy, B. J. "Selecting out of control variables with the T2 multivariate quality control procedure." Journal of the Royal Statistical Society Series D: The Statistician 36.5, 1987, 571-581.
    [24] Navamani, T. M. "Efficient deep learning approaches for health informatics."
    Deep Learning and Parallel Computing Environment for Bioengineering Systems. Academic Press, 2019, 123-137.
    [25] Niaki, S. T. A., & B. Abbasi. "Fault diagnosis in multivariate control charts using artificial neural networks." Quality and Reliability Engineering International
    21.8, 2005, 825-840.
    [26] Noorossana, R., M. Farrokhi, & A. Saghaei. "Using neural networks to detect and classify out‐of‐control signals in autocorrelated processes." Quality and Reliability Engineering International 19.6, 2003, 493-504.
    [27] Psarakis, S. "The use of neural networks in statistical process control charts."
    Quality and Reliability Engineering International 27.5, 2011, 641-650.
    [28] Song, H., Q. Xu, H. Yang, & J. Fang. "Interpreting out-of-control signals using instance-based Bayesian classifier in multivariate statistical process control."
    Communications in Statistics-Simulation and Computation 46.1, 2017, 53-77.
    [29] Vanschoren, J. "Meta-learning: A survey." arXiv preprint arXiv:1810.03548, 2018.

    [30] Western Electric Company. Statistical Quality Control Handbook. AT & T Technologies, 1958.
    [31] Wold, S., K. Esbensen, & P. Geladi. "Principal component analysis."
    Chemometrics and Intelligent Laboratory Systems 2.1-3, 1987, 37-52.
    [32] Yu, J., L. Xi, & X. Zhou. "Identifying source (s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble."
    Engineering Applications of Artificial Intelligence 22.1, 2009, 141-152.
    [33] Zorriassatine, F., & J. D. T. Tannock. "A review of neural networks for statistical process control." Journal of Intelligent Manufacturing 9, 1998, 209-224.

    QR CODE
    :::