| 研究生: |
戴其璜 Chi-Hwang Tai |
|---|---|
| 論文名稱: |
顆粒動力行為:流體化、迴流與偏析 Granular Dynamic Behaviors: Fluidization, Convection, and Segregation |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 顆粒動力行為 、顆粒體 、流體化 、迴流運動 、偏析現象 、微量液體 、粒子溫度 |
| 外文關鍵詞: | convection, segregation, fluidization, granular dynamics, liquid content, granular temperature |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文以實驗的方式探討顆粒體物質受到垂直方向的振動驅動力時,振動床內顆粒物質的動力行為,探究主題包含振動顆粒床的流體化、迴流運動以及振動床內顆粒的偏析現象。
首先建構三維圓柱型容器以作為振動顆粒床,用以探討振動顆粒床的流體化現象,並深究振動床流體化與床內顆粒添加量和外加振動驅動力間相應關係,並獲得相關參數的整體相圖,其相圖中清楚描述各種相態間的臨界範圍,包含氣相,液相,固相,和靜止相等各種相態。
之後建置二維矩型容器的振動顆粒床,配合利用影像處理技術和顆粒追蹤的方法,以相關物理參數定量分析顆粒振動床的流體化現象,並且深入探究振動床內顆粒添加量和顆粒物理性質對於振動床流體化的影響。並發現振動床流體化的重要無因次參數。
其三以二維矩型容器探討振動顆粒床因置入顆粒的密度不同而造成的偏析現象,亦會探討此偏析現象與顆粒添加量和相互添加比例的關係。由研究中發現振動顆粒床內顆粒偏析現象,主要的影響機制與系統的運動型態有極為重要的相互關係,其中影響振動顆粒床的偏析機制,整體床內顆粒的迴流運動是一個影響振動顆粒床偏析相當重要的一種流場運動型態。
最後,探討添加微量液體對於振動顆粒床內迴流現象的影響,其中研究變因包含微量液體的添加量、黏度和表面張力。藉由添加微量液體的實驗獲得振動顆粒床迴流現象的強度與修正無因次參數(BogM)的冪次關係。
Abstract
The experimental methods were employed to investigate the granular dynamics under the vertical vibrated driving force. The main research topics include the fluidization, the convection, and the density segregation in a vibrated granular bed.
As an ensemble of macroscopic particles is mechanically excited by vertical vibrations, the energy input is dissipated into the system by multiple inelastic collisions. As a result, when a mono-dispersed set of glass beads exceeds a critical number of particles, a phase transition can be condensed crystalline-like state. Systematic studies of the dependence of this critical number on the internal parameters as well as the external conditions (amplitude and frequency of the shaker) are presented.
The measurements of the fluidization process in the vertically vibrated two-dimensional granular packing were reported. An initially close packed granular bed is exposed to sinusoidal container oscillations with gradually increasing amplitude. At first the particles close to the free surface become mobile. When a critical value of the forcing strength is reached the remaining crystal suddenly breaks up and the bed fluidizes completely. This transition leads to discontinuous changes in the density distribution and in the root mean square displacement of the individual particles.
The dominant mechanism affecting the flow behavior of granular materials is the random motion of particles resulted from the interactive collisions between particles. The velocity fluctuations induce the segregation in granular flows. The different densities of granular material were used to investigate the segregation mechanisms in a vibrated granular bed.
The convection behaviors of wet granular materials subjected to external vertical vibration were examined. Different types of liquids with different contents, viscosities, and surface tensions were added to granular materials (in this case glass spheres) to form cohesive materials. The effects of the content, viscosity, and surface tension of the additions on the convection dynamics of the wet granular materials in the vibrated bed are discussed in the study. The convection flow rate decreased in a power relation with the modified granular Bond number.
Bibliography
Albert, R., Albert, I., Hornbaker, D., Schiffer, P., and Barabási, A.-L., “Maximum Angle of Stability in Wet and Dry Spherical Granular Media,” Phys. Rev. E, 56, R6271 (1997).
Barabási, A.-L., Albert, R., and Schiffer, P. “The Physics of Sand Castles: Maximum Angle of Stability in Wet and Dry Granular Media,” Physica A, 266, 366 (1999).
Barker, G. C. and Metha, A., “Size Segregation Mechanisms,” Nature, 364, 486 (1993).
Breu, A. P. J., Ensner, H. M., Kruelle, C. A., and Rehberg, I., “Reversing the Brazil-nut Effect: Competition between Percolation and Condensation, Phys. Rev. Lett., 90, 014302 (2003).
Campbell, C. S., “Rapid Granular Flows,” Annu. Rev. Fluid Mech., 22, 57 (1990).
Clément, E., Duran, J., and Rajchenbach, J. “Experimental Study of Heaping in a Two-Dimensional Sandpile,” Phys. Rev. Lett., 69, 1189 (1992).
Clément, E. and Rajchenbach, J., “Fluidization of a Bidimensional Powder,” Europhys. Lett., 16, 133 (1991).
Douady, S., Fauve, S., and Laroche, C., “Subharmonic Instabilities and Defect in a Granular Layer under Vertical Vibrations,” Europhys. Lett., 8, 621 (1989).
Ennis, B. J., Green, J., and Davies, R., “The Legacy of Neglect in the U.S.,” Chem. Eng. Prog., 90, 32 (1994).
Ennis, B. J., Li, J., Tardos, G. I., and Pfeffer, R., “The Influence of Viscosity on the Strength of an Axially Strained Pendular Liquid Bridge,” Chem. Eng. Sci., 45, 3071 (1990).
Eshuis, P., van der Weele, K., van der Meer, D., and Lohse, D., “Granular Leidenfrost Effect: Experiment and Theory of Floating Particle Clusters,” Phys. Rev. Lett., 95, 258001 (2005).
Evesque, P. and Rajchenbach, J., “Instability in a Sand Heap,” Phys. Rev. Lett., 69, 44 (1989).
Fauve, S., Douady, S., and Laroche, C., “Collective Behaviors of Granular Masses under Vertical Vibration,” J. Phys. (Paris), 50, 187 (1989).
Fisher, R. A., “On the Capillary Forces in an Ideal Soil,”; correction of formulae given by W. B. Haines, J. Agric. Sci., 16, 492 (1926).
Fraysse, N., Thomé, H., and Petit, L., “Humidity Effects on the Stability of a Sandpile,” Eur. Phys. J. B 11, 615 (1999).
Gallas, J. A. C., Herrmann, H. J., and Sokolowski, S., “Molecular Dynamics Simulation of Powder Fluidization in Two Dimensions,” Physica A, 189, 437 (1992a).
Gallas, J. A. C., Herrmann, H. J., and Sokolowski, S., “Convection Cells in Vibrating Granular Media,” Phys. Rev. Lett., 69, 1371 (1992b).
Geromichalos, D., Kohonen, M. M., Mugele, F., and Herminghaus, S., “Mixing and Condensation in a Wet Granular Medium,” Phys. Rev. Lett., 90, 168702 (2003).
Götzendorfer, A., Tai, C. H., Kruelle, C. A., Rehberg, I., and Hsiau, S. S., “Fluidization of a Vertically Vibrated Two-dimensional Hard Sphere Packing: A Granular Meltdown,” Phys. Rev. E, 74 011304 (2006).
Grossman, E. L., “Effects of Container Geometry on Granular Convection,” Phys. Rev. E, 56, 3290 (1997).
Halsey, T. C. and Levine, A. J., “How Sandcastles Fall,” Phys. Rev. Lett. 86, 3141 (1998).
Hayakawa, H., Yue, S., and Hong, D. C., “Hydrodynamic Description of Granular Convection,” Phy. Rev. Lett., 75, 2328 (1995).
Herrmann, H. J., “Physics of Granular Media,” Chaos solitons & fractals, 6, 203 (1995).
Hong, D. C., Quinn, P. V., and Luding, S., “Reverse Brazil Nut Problem: Competition between Percolation and Condensation,” Phys. Rev. Lett., 86, 3243 (2001).
Hsiau, S. S., and Chen, C. H. “Granular Convection in a Vertical Shaker,” Powder Technol., 111, 210 (2000).
Hsiau, S. S. and Chen, W. C., “The Density Effect of Binary Mixtures on Segregation Process in a Vertical Shaker,” Adv. Powder Technol., 13, 301 (2002).
Hsiau, S. S. and Jang, H. W., “Measurements of Velocity Fluctuations of Granular Materials in a Shear Cell,” Exp. Thermal and Fluid Sci., 17, 202 (1998).
Hsiau, S. S. and Pan, S. J., “Motion State Transitions in a Vibrated Granular Bed,” Powder Technol., 96, 219 (1998).
Hsiau, S. S., and Shieh, Y. M., “Fluctuations and Self-Diffusion of Sheared Granular Material Flows,” J. Rheol., 43, 1049 (1999).
Hsiau, S. S., Wang, P. C., and Tai, C. H., “Convection Cells and Segregation in a Vibrated Granular Bed,” AIChE Journal, 48, 1430 (2002).
Hsiau, S. S., Wu, M. H., and Chen, C. H., “Arching Phenomena in a Vibrated Granular Bed,” Powder Technol., 99, 185 (1998).
Hsiau, S. S. and Yang, S. C., “Numerical Simulation of Self-diffusion and Mixing in a Vibrated Granular Bed with the Cohesive Effect on Liquid Bridges,” Chem. Eng. Sci., 58, 339 (2003).
Hsiau, S. S., and Yu, H. Y., “Segregation Phenomena in a Shaker,” Powder Technol., 93, 83 (1997).
Ichiki, K. and Hayakawa, H., “Dynamical Simulation of Fluidized Beds Hydrodynamically Interacting Granular Particles,” Phys. Rev. E, 52, 658 (1995).
Jaeger, H. M. and Nagel, S. R., “Physics of the Granular State,” Science, 255, 1523 (1992).
Jullien, R., Meakin, P., and Pavlovitch, A., “Three-Dimensional Model for Particle-Size Segregation by Shaking.” Phys. Rev. Lett., 69, 640 (1992).
Khakhar, D. V., McCarthy, J. J., and Ottino, J. M., “Mixing and Segregation of Granular Materials in Chute Flows,” Chaos, 9, 594 (1999).
Knight, J. B., “External Boundaries and Internal Shear Bands in Granular Convection,” Phys. Rev. E, 55, 6016 (1997).
Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, J. K., Jaeger, H. M., and Nagel, S. R., “Experimental Study of Granular Convection,” Phys. Rev. E, 54, 5726 (1996).
Knight, J. B., Jaeger, H. M., and Nagel, S. R., “Vibration-Induced Size Separation in Granular Media: the Convection Connection,” Phys. Rev. Lett., 70, 3728 (1993).
Knight, J. B., Jaeger, H. M., and Nagel, S. R., “Granular Convection and Size Separation,” Book of Abstracts McNU''97, the 1997 Joint ASME, ASCE, SES Summer Meeting, Northwestern University, 616 (1997).
Laroche, C., Douady, S., and Fauve, S., “Convective Flow of Granular Masses under Vertical Vibrations,” J. Phys. (Paris), 50, 699 (1990).
Lee, J., “Heap Formation in Two-Dimensional Granular Media,” J. Phys. A, 27, L257 (1994).
Li, H. and McCarthy, J. J., “Controlling Cohesive Particle Mixing and Segregation,” Phys. Rev. Lett., 90, 184301 (2003).
Luding, S., Clément, E., Blumen, A., Rajchenbach, J., and Duran, J., “Onset of Convection in Molecular Dynamics Simulations of Grains,” Phys. Rev. E, 50, 1762 (1994).
Luding, S., Herrmann, H. J., and Blumen, A., “Simulations of Two-dimensional Arrays of Beads under External Vibrations: Scaling Behavior,” Phys. Rev. E, 50, 3100 (1994).
Mason, G. and Clarke, W. C., “Liquid Bridges between Spheres,” Chem. Eng. Sci., 20, 859 (1965).
Mason, T. G., Levine, A. J., Ertas, D., and Halsey, T. C., “Critical Angle of Wet Sandpiles,” Phys. Rev. E, 60, 5044 (1999).
Mehrotra, V. P. and Sastry, K. V. S., “Pendular Bond Strength between Unequal Sized Spherical Particles,” Powder Technol., 25, 203 (1980).
Melo, F., Umbanhowar, P., and Swinney, H., “Transition to Parametric Wave Patterns in a Vertically Oscillated Granular Layer,” Phys. Rev. Lett., 72, 172 (1994).
Mikami, T., Kamiya, H., and Horio, M., “Numerical-Simulation of Cohesive Powder Behavior in a Fluidized-bed,” Chem. Eng. Sci., 53, 1927 (1998).
Nase, S. T., Vargas, W. L., Abatan, A. A., and McCarthy, J. J., “Discrete Characterization Tools for Cohesive Granular Material,” Powder Technol., 116, 214 (2001).
Natarajan, V. V. R., Hunt, M. L., and Taylor, E. D., “Local Measurements of Velocity Fluctuations and Diffusion Coefficients for a Granular Material Flow,” J. Fluid Mech., 304, 1 (1995).
Ogawa, S., “Multi-temperature Theory of Granular Materials,” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo 208 (1978).
Pak, H. and Behringer, R., “Surface Waves in Vertically Vibrated Granular Materials,” Phys. Rev. Lett., 71, 1832 (1993).
Pakowski, Z., Mujumdar, A. S., and Strumillo, C., “Theory and Application of Vibrated Beds and Vibrated Fluid Beds for Drying Processes,” in: Advances in Drying 3, A. S. Mujumdar (Ed.), pp. 85-99, Hemisphere, Washington (1984).
Quinn, P. V. and Hong, D. C., “Liquid-solid Transition of Hard Spheres under Gravity,” Phys. Rev. E, 62, 8295 (2000).
Rosato, A., Strandburg, K. J., and Swendsen, R. H., “Why the Brazil Nuts Are on Top: Size Segregation of Particulate Matter by Shaking,” Phys. Rev. Lett., 58, 1038 (1987).
Suzuki, K., Hosaka, H., Yamazaki, R., and Jimbo, G., “Drying Characteristics of Particles in a Constant Drying Rate Period in Vibro-Fluidized Bed,” J. Chem. Engng. Japan, 13, 117 (1980).
Taguchi, Y. H., “New Origin of Convective Motion: Elastically Induced Convection in Granular Materials,” Phys. Rev. Lett., 69, 1367 (1992).
Tai, C. H. and Hsiau, S. S., “Dynamic Behaviors of Powders in a Vibrating Bed,” Powder Technol., 139, 221 (2004).
Warr, S., Huntley, J. M., and Jacques, G. T. H., “Fluidization of a 2-Dimensional Granular System – Experimental Study and Scaling Behavior,” Phys. Rev. E, 52, 5583 (1995).
Wassgren, C. R., Vibration of Granular Materials, Ph.D. Thesis, California Institute of Technology, CA, UAS (1997).
Wassgren, C. R., Hunt, M. L., and Brennen, C. E., “Vertical Side Wall Convection in Deep Beds of Granular Materials Subjected to Vertical Vibration,” Proceedings of the 5th World Congress of Chem. Eng. San Diego, CA, USA, 355 (1996).
Wildman, R. D. and Huntley, J. M., “Novel Method for Measurement of Granular Temperature Distributions in Two-dimensional Vibro-fluidised Beds,” Powder Technol., 113, 14 (2000).
Yang, S. C. and Hsiau, S. S., “The Simulation of Powders with Liquid Bridges in a 2D Vibrated Bed,” Chem. Eng. Sci., 56, 6837 (2001).
Yang W. L. and Hsiau, S. S., “Wet Granular Materials in Sheared Flows,” Chem. Eng. Sci., 60, 4265 (2005).
Yang, W. L. and Hsiau, S. S., “The Effect of Liquid Viscosity on Shear Granular Flows,” Chem. Eng. Sci., 61, 6085 (2006).
Yu, S. H., Ma, B. J., and Weng, Y. Q., “Drying Performance and Heat Transfer in a Vibrated Fluidized Beds,” in: Drying ‘92, A. S. Mujumdar (Ed.), pp. 731-740. Elsevier, Amsterdam, (1992).